Advance Mathematics-7

Revision

3. (i) $461 \times 999+461=461(999+1)=461 \times 1000=461000$
(ii) $887 \times 10 \times 461-361 \times 8870$

$$
\begin{aligned}
& =8870 \times 461-361 \times 8870=8870(461-361) \\
& =8870 \times 100=\mathbf{8 8 7 0 0 0}
\end{aligned}
$$

4. Let the number x.

$$
\begin{aligned}
35 \times 20+18 & =x \\
700+18 & =x \\
x & =\mathbf{7 1 8}
\end{aligned}
$$

5. 24 radio sets cost $=₹ 18720$.

One radio set cost $=\frac{₹ 18720}{24}=₹ \mathbf{7 8 0}$
7. $10000001-9999998=\mathbf{3}$
8. First number \times second number $=\mathrm{HCF} \times$ LCM

$$
\begin{aligned}
16428 & =\mathrm{LCM} \times 37 \\
\mathrm{LCM} & =\frac{16428}{37}=\mathbf{4 4 4}
\end{aligned}
$$

9. $398-7=391$
391) $\overline{425(1}$
392) $\overline{527(31}$
$436-11=425$
$542-15=527$
$\frac{391}{34) 391(11}$
$\frac{51}{17}$
391, 425, 527
$H C F=17$
11. (i) $-307=|-307|=\mathbf{3 0 7}$,
(ii) $|225|=\mathbf{2 2 5}$
(iii) $|0|=\mathbf{0}$,
(iv) $|-a+7|=\boldsymbol{a}-7$
12. (i) $50-10 \times 2$ of $5+(40-4) \div 9$

$$
\begin{aligned}
& =50-10 \times 2 \times 5+(36) \div 9 \\
& =50-100+4=54-100=-46
\end{aligned}
$$

(ii) $121-\{27 \div(3 \times 3)-(-3)\}$

$$
\begin{aligned}
& =121-\{27 \div(9)+3\} \\
& =121-\left\{\frac{27}{9}+3\right\} \\
& =121-\{3+3\}=121-6=\mathbf{1 1 5}
\end{aligned}
$$

13. Hari's share $=₹ 500-₹ 300=₹ 200$

Ram : Hari $\Rightarrow 300: 200=\mathbf{3 : 2}$
14. $81 \times 16=48 \times x \Rightarrow x=\frac{81 \times 16}{48}=\frac{81}{3}=27$
15. $\frac{3}{4}$ or $\frac{5}{6}$

$$
\begin{gathered}
\frac{3 \times 6}{4 \times 6}=\frac{18}{24}, \quad \frac{5 \times 4}{6 \times 4}=\frac{20}{24} \\
\frac{5}{6}>\frac{3}{4}
\end{gathered}
$$

16. (i) $\frac{12.5}{100}=\frac{125}{1000}=\mathbf{0 . 1 2 5}$
(ii), (iii), (iv), (v) Do yourself.
17. Remaining kerosene $=250-5=245$

$$
=\frac{245 \times 100}{250}=\frac{49 \times 10}{5}=\mathbf{9 8 \%}
$$

18. We calculate the gain or loss for $12 \times 10=120$ Oranges purchased

$$
\begin{aligned}
\text { CP of } 12 \text { Oranges } & =₹ 10 \\
\text { CP of } 120 \text { Oranges } & =₹ \frac{10 \times 120}{12}=₹ 100
\end{aligned}
$$

Again, SP of 10 Oranges $=₹ 12$

$$
\text { SP of } 120 \text { Oranges }=₹ \frac{12 \times 120}{10}=₹ 144
$$

$$
\text { Gain }=\text { SP }-\mathrm{CP}=₹ 144-₹ 100=₹ 44
$$

This gain of ₹ 44 is on CP ₹ 100
\Rightarrow
Gain $=44 \%$
19. If the CP was $₹ 100$, Gain $=14 \%$

SP would be ₹ $(100+14)=₹ 114$
If the SP would be ₹ 114 then $\mathrm{CP}=₹ 100$
If the SP would be $₹ 1$ then $\mathrm{CP}=₹ \frac{100}{114}$
If the SP would be ₹ 570 then $\mathrm{CP}=\frac{100 \times 570}{114}$

$$
=100 \times 5=₹ \mathbf{5 0 0}
$$

20. Amount $=2 x$, Principal $=x, \mathrm{SI}=2 x-x=x$

$$
\begin{aligned}
\text { Rate } & =\frac{S I \times 100}{P \times T} \\
& =\frac{x \times 100}{x \times 5}=\frac{100}{5}=\mathbf{2 0} \%
\end{aligned}
$$

21. $2 x^{2}-2 x y+y^{2}+x^{2}-y^{2}+2 x y+y^{2}+x^{2}$

$$
\begin{aligned}
& =2 x^{2}+x^{2}+x^{2}+y^{2}-y^{2}+y^{2}-2 x y+2 x y \\
& =\mathbf{4} \boldsymbol{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}
\end{aligned}
$$

22. $a^{2}+2 a b+y^{2}+A=3 a^{2}-a b$

$$
\begin{aligned}
A & =3 a^{2}-a b-a^{2}-2 a b-y^{2} \\
& =\mathbf{2} \boldsymbol{a}^{\mathbf{2}}-\mathbf{3} \boldsymbol{a} \boldsymbol{b}-\mathbf{y}^{\mathbf{2}}
\end{aligned}
$$

23. $x^{4}-x^{3}+x^{2}+x^{3}+x-3-x^{4}-x^{2}+x$

$$
\begin{aligned}
& =2 x-3 \\
& =2 x-3-\left(x^{4}-x^{3}-x+4\right) \\
& =2 x-3-x^{4}+x^{3}+x-4 \\
& =-\boldsymbol{x}^{4}+\boldsymbol{x}^{3}+\mathbf{3 x}-\mathbf{7}
\end{aligned}
$$

24. $2 a b^{3}-7 a^{2} b^{2}+5 b c^{3}$ putting the value of $a=2, b=3$ and $c=-1$.

$$
\begin{aligned}
& =2 \times 2 \times(3)^{3}-7 \times(2)^{2} \times(3)^{2}+5(3) \times(-1)^{3} \\
& =4 \times 27-7 \times 36+15 \times(-1) \\
& =108-252-15 \\
& =108-267=-159
\end{aligned}
$$

25. $\frac{x+y+z}{x y z}=\frac{-2+\frac{7}{2}+\frac{1}{2}}{(-2) \times \frac{7}{2} \times \frac{1}{2}}$; Putting the value of $x=-2, y=3 \frac{1}{2}$ and $z=\frac{1}{2}$.

$$
=\frac{-2+\frac{7+1}{2}}{-\frac{7}{2}}=\frac{-2+4}{\frac{-7}{2}}=2 \times\left(\frac{-2}{7}\right)=\frac{-4}{7}
$$

26. (i) $9-\{x-4(x-3)+8\}=9-\{x-4 x+12+8\}$

$$
\begin{aligned}
& =9-\{-3 x+20\} \\
& =9+3 x-20 \\
& =\mathbf{3 x}-\mathbf{1 1}
\end{aligned}
$$

(ii) $1-\{2-x(5-x)+5\}=1-\left\{2-5 x+x^{2}+5\right\}$

$$
\begin{aligned}
& =1-\left\{7-5 x+x^{2}\right\} \\
& =1-7+5 x-x^{2} \\
& =-\boldsymbol{x}^{\mathbf{2}}+\mathbf{5} \boldsymbol{x}-\mathbf{6}
\end{aligned}
$$

(iii), (iv) Do yourself.
27. Let the numbers $(x+1)$ and $(x+3)$

$$
\begin{array}{rlrl}
& & x+1+x+3 & =76 \\
\Rightarrow & 2 x+4 & =76 \\
\Rightarrow & 2 x & =76-4 \\
\Rightarrow & 2 x & =72 \\
\Rightarrow & x & =36
\end{array}
$$

So, the numbers are $\mathbf{3 7}$ and $\mathbf{3 9}$.
29. $\frac{9}{5} c+32=\frac{9 \times 35}{5}+32 \because$ Put the value of $c=35$.

$$
=9 \times 7+32=\mathbf{9 5}
$$

30. $3 p-2 q+2 r+5 p+3 q-2 r-4 p+2 q-3 r$

$$
\begin{align*}
& =3 p+5 p-4 p-2 q+3 q+2 q+2 r-2 r-3 r \\
& =4 p+3 q-3 r \tag{i}
\end{align*}
$$

and $2 p-3 q-3 r+4 p-q-r+3 p-2 q-3 r$

$$
\begin{align*}
& =2 p+4 p+3 p-3 q-q-2 q-3 r-r-3 r \\
& =9 p-6 q-7 r \tag{ii}\\
& \text { eq. (ii) - eq. (i) } \\
& =9 p-6 q-7 r-(4 p+3 q-3 r) \\
& =9 p-6 q-7 r-4 p-3 q+3 r=\mathbf{5 p}-\mathbf{9 q}-\mathbf{4 r}
\end{align*}
$$

31. The CP of 150 dozens $=150 \times 20=3000$

$$
\begin{aligned}
1 \text { dozen } & =12 \\
150 \text { dozen } & =150 \times 12=1800 \\
\text { The SP of } 1800 \text { pencil } & =1800 \times 2.50 \\
& =₹ 4500 \\
\text { Profit } & =\mathrm{SP}-\mathrm{CP} \\
& =4500-3000=₹ 1500 \\
\text { Profit } \% & =\frac{1500 \times 100}{3000}=\frac{100}{2}=\mathbf{5 0 \%}
\end{aligned}
$$

32. Total CP of a machine $=4450+150+400$

$$
\begin{aligned}
& =₹ 5000 \\
\text { SP } & =₹ 6200 \\
\text { Profit } \% & =₹(6200-5000)=₹ 1200 \\
\text { Profit } \% & =\frac{1200 \times 100}{5000}=\mathbf{2 4 \%}
\end{aligned}
$$

33. Shalini $\%=\frac{548 \times 100}{800}=\frac{548}{8}=\mathbf{6 8 . 5} \%$

Sushmita $\%=\frac{460 \times 100}{600}=\frac{460}{6}=76.7 \%$
Sushmita's performance is better.
34. Increase population $=\frac{90 \times 10000000 \times 2}{100}=18000000$

Population after one year $=900000000+18000000$
$=91$ crore 80 lakh
35. Perimeter of rectangular $=2(l+b)$

$$
2 \times(25+8)=2 \times 33=\mathbf{6 6} \mathbf{m}
$$

36. Perimeter of rectangular $=2 \times(l+b)$

$$
\begin{aligned}
& 360=2 \times(116+x) \\
& 180=116+x \Rightarrow x=64 \mathrm{~cm}
\end{aligned}
$$

37. (i) Perimeter of square $4 a \Rightarrow 100=4 a \Rightarrow a=\mathbf{2 5}$
(ii) Do yourself.
38. Number of tiles $=\frac{\text { Area of bathroom }}{\text { Area of tiles }}$

$$
=\frac{3 \times 3 \times 10000}{25 \times 25}=144
$$

39. (i) Area of rectangle $=$ length \times breadth

$$
\begin{aligned}
& =24 \times 16=384 \mathrm{~cm}^{2} \\
\text { Area of square } & =(\text { side })^{2}=(21)^{2}=441 \mathrm{~cm}^{2} \\
\text { Square, Difference } & =(441-384) \mathrm{cm}^{2}=\mathbf{5 7} \mathbf{c m}^{2}
\end{aligned}
$$

(ii)
41. $100 \times 100 \mathrm{~cm}^{2}=10000 \mathrm{~cm}^{2}$
42. (i) Perimeter $=$ Sum of four sides $=52.5 \mathrm{~cm} \times 4=\mathbf{2 1 0 . 0} \mathbf{~ c m}^{2}$
(ii), (iii) Do yourself.
43. Perimeter of park $=2 \times(300+200)$

$$
\begin{aligned}
& =(2 \times 500) \\
& =1000 \mathrm{~cm}
\end{aligned}
$$

Cost of fencing $=1000 \times 24=₹ \mathbf{2 4 0 0 0}$
44. $\angle B O C+\angle A O C=180^{\circ} \Rightarrow \angle B O C=180^{\circ}-45^{\circ}=135^{\circ}$
45. (i) $90^{\circ}-32^{\circ}=\mathbf{5 8}^{\circ}$
(ii), (iii), (iv) Do yourself.
46. (i) $180^{\circ}-25^{\circ}=155^{\circ}$ (ii), (iii), (iv) Do yourself.
47. Let the angle is x, then its supplementary angle $=3 x$

Now $x+3 x=180^{\circ} x=\frac{180^{\circ}}{4}=45^{\circ}$
So, angles are 45° and $45^{\circ} \times 3=\mathbf{1 3 5}^{\circ}$
48. (i) $\angle x=180^{\circ}-135^{\circ}=45^{\circ}$
(ii) $\angle x=60^{\circ}$
50. Sum of angles of triangle $=180^{\circ}$

$$
\begin{array}{cc}
\Rightarrow & 25^{\circ}+75^{\circ}+x^{\circ}=180^{\circ} \\
\Rightarrow & x^{\circ}=180^{\circ}-100^{\circ}=80^{\circ} \\
\Rightarrow & x^{\circ}=\mathbf{8 0}^{\circ}
\end{array}
$$

52. (i) $40^{\circ}+65^{\circ}+x^{\circ}=180^{\circ}$

$$
\Rightarrow \quad x^{\circ}=180^{\circ}-105^{\circ}=75^{\circ}
$$

(ii) $4 x^{\circ}+5 x^{\circ}+108^{\circ}=180^{\circ}$

$$
\begin{aligned}
& 9 x^{\circ}=72^{\circ} \\
\Rightarrow & x^{\circ}=\frac{72}{9} \\
\Rightarrow & x^{\circ}=\mathbf{8}^{\circ}
\end{aligned}
$$

54. Radius $=\frac{\text { Diameter }}{2}=\frac{12}{2}=6 \mathbf{c m}$
55. Diameter $=2 \times$ radius $=5 \times 2=10 \mathrm{~cm}$
56. $(x+20)^{\circ}+64^{\circ}=180^{\circ} \Rightarrow x^{\circ}+84^{\circ}=180^{\circ}, x=96^{\circ}$
57. $120^{\circ}+130^{\circ}+45^{\circ}+x=360^{\circ}$

$$
\begin{array}{rlrl}
& & 295^{\circ}+x^{\circ} & =360^{\circ} \\
\Rightarrow & x^{\circ} & =655^{\circ}
\end{array}
$$

60. $5 x^{\circ}+30^{\circ}+3 x+30^{\circ}=180^{\circ}$

$$
\begin{aligned}
\Rightarrow \quad 8 x^{\circ}+60^{\circ} & =180^{\circ} \Rightarrow 8 x^{\circ}=120^{\circ} \\
x^{\circ} & =15^{\circ} \\
5 x^{\circ}+30^{\circ}+y^{\circ} & =180^{\circ} \\
75^{\circ}+30^{\circ}+y^{\circ} & =180^{\circ} \\
y^{\circ} & =75^{\circ} \\
\angle y & =\angle z \\
75^{\circ} & =\angle z \text { or } \angle z=\mathbf{7 5}^{\circ}
\end{aligned}
$$

62. $x^{\circ}+45^{\circ}+55^{\circ}=180^{\circ}$

$$
\begin{aligned}
x^{\circ} & =180^{\circ}-100^{\circ}=80^{\circ} \\
\angle x & =80^{\circ}, y=\angle A=55^{\circ}, z=180^{\circ}-\left(80^{\circ}+55^{\circ}\right) \\
& =180^{\circ}-135^{\circ}=45^{\circ}
\end{aligned}
$$

Unit-I : Number System

Integers

EXERCISE 1

3. (i) $2 \times(-15)=-(2 \times 15)=-\mathbf{3 0}$
(ii) $(-17) \times(-20)=+(17 \times 20)=\mathbf{3 4 0}$
(iii) $3 \times(-8) \times 5=-(3 \times 8 \times 5)=-\mathbf{1 2 0}$
(iv), (v), (vi), (vii), (viii), (ix), (x), (xi), (xii) Do yourself.
4. (i) $(1569 \times 887)-(569 \times 887) \Rightarrow 887(1569-569)$

$$
=887 \times 1000=\mathbf{8 8 7 0 0 0}
$$

(ii), (iii), (iv), (v), (vi) Do yourself.
5. (i) $x \times(-1)=-40 \Rightarrow(-40) \times(-1)=-40$
(ii), (iii) Do yourself.
6. (i) $(8+9) \times 10$ and $8+9 \times 10$
17×10 and $8+90$
$170>98$
So, $(8+9) \times 10>8+9 \times 10$
(ii), (iii) Do yourself.
8. $a \times(-1)=-30 \Rightarrow a=(-1) \times(-30)=\mathbf{3 0}$

So, it is positive.
9. $a \times(-1)=30 \Rightarrow 30 \times(-1)=-\mathbf{3 0}$

So it is negative.
11. (i) $18 \div(-3)=(18) \times \frac{1}{-3}=-6$
(ii) $(-18) \div 3=(18) \times \frac{1}{-3}=-6$
(iii) $(-18) \div(-3)=-18 \times \frac{1}{-3}=\mathbf{6}$
(iv), (v), (vi), (vii), (viii), (ix), (x) Do yourself.
(xi) $200000 \div(-100)=200000 \times \frac{1}{-100}=-\mathbf{2 0 0 0}$
(xii) Do yourself.
12., 13. Do yourself.
14. (i) $10 \times 10 \times 10 \times 10=10^{4}$
(ii) $(-13) \times(-13) \times(-13) \times(-13) \times(-13) \times(-13)$

$$
=(-13)^{6}=\mathbf{1 3}^{6}
$$

15. (i) $50^{2}=50 \times 50=\mathbf{2 5 0 0}$
(ii) $(-1)^{51}=-\mathbf{1}$
(iii) $1^{100}=\mathbf{1}$
(iv), (v), (vi) Do yourself.
(vii) $2^{3} \times 2^{5}=2^{3+5}=2^{8}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

$$
=2^{8}=\mathbf{2 5 6}
$$

(viii), (ix), (x), (xi), (xii) Do yourself.
2. Fractions

EXERCISE 2.1

1. $\frac{4}{7}, \frac{8}{9}$ and $\frac{2}{11}$
$\frac{406,616,126}{693}$
So, $\frac{4}{7}, \frac{8}{9}$ and $\frac{2}{11}=\frac{\mathbf{4 0 6}}{\mathbf{6 9 3}}, \frac{\mathbf{6 1 6}}{\mathbf{6 9 3}}$ and $\frac{\mathbf{1 2 6}}{\mathbf{6 9 3}}$
2. (i) $\frac{2}{3}$ and $\frac{5}{7}$
by cross multiplication $2 \times 7=14$ and $3 \times 5=15$
$14<15$ so $\frac{\mathbf{2}}{\mathbf{3}}<\frac{\mathbf{5}}{\mathbf{7}}$
(ii) and (iii) Do yourself.
3. (i) $\frac{1}{2}, \frac{3}{4}, \frac{2}{3}, \frac{5}{6}, \frac{4}{5}$
$\frac{30,45,40,50,48}{60}$
We know $30<40<45<48<50$
So $\frac{\mathbf{1}}{2}<\frac{\mathbf{2}}{\mathbf{3}}<\frac{\mathbf{3}}{\mathbf{4}}<\frac{\mathbf{5}}{6}<\frac{\mathbf{4}}{\mathbf{5}}$
(ii) Do yourself.
4. Do yourself.
5. (i) $\frac{7}{8}+\frac{5}{8}=\frac{7+5}{8}=\frac{12}{8}=\frac{3}{2}=\mathbf{1} \frac{\mathbf{1}}{2}$
(ii) $\frac{11}{12}+\frac{7}{15}$

$$
\frac{55+28}{60}=\frac{83}{60}=\mathbf{1} \frac{\mathbf{2 3}}{\mathbf{6 0}}
$$

(iii), (iv), (v) Do yourself.
(vi) $5 \frac{1}{3}+2 \frac{1}{9}+7 \frac{5}{6}=\frac{16}{3}+\frac{19}{9}+\frac{47}{6}$

$$
\frac{96+38+141}{18}=\frac{275}{18}=\mathbf{1 5} \frac{\mathbf{5}}{\mathbf{1 8}}
$$

6. (i) $\frac{7}{3}-\frac{5}{2}$

$$
\frac{14-15}{6}=-\frac{1}{6}
$$

(ii), (iii) Do yourself.
7. (i) $\frac{11}{8}-\frac{5}{8}=\frac{11-5}{8}$

$$
=\frac{6}{8}=\frac{\mathbf{3}}{\mathbf{4}}
$$

(ii), (iii), (iv), (v), (vi) Do yourself.
8. (i) $\frac{2}{5}-\frac{3}{10}+\frac{7}{15}$

$$
\frac{12-9+14}{30}=\frac{\mathbf{1 7}}{\mathbf{3 0}}
$$

(ii), (iii), (iv), (v), (vi) Do yourself.
9. $\frac{4}{7}$ th, $\frac{5}{8}$ th
$\frac{32,35}{56}$ Since $\mathbf{3 5}>\mathbf{3 2}$.
(So his daughter got more of his property.)
10. $\frac{1}{17}, \frac{3}{19}, \frac{5}{21}$

399, 1071, 1615 6783

Since $\mathbf{3 9 9}$ < $\mathbf{1 0 1 7 < 1 6 1 5}$
So, Soap C has most and soap A has least incence.
11. Length of pencil $=17 \frac{3}{4}=\frac{71}{4} \mathrm{~cm}$

It is sharpened $=2 \frac{1}{3}=\frac{7}{3} \mathrm{~cm}$

Remaining length $=\frac{71}{4}-\frac{7}{3}$

$$
=\frac{213-28}{12}=\frac{185}{12}=15 \frac{\mathbf{5}}{\mathbf{1 2}} \mathbf{c m}
$$

12. Praseen walks to go school $=5 \frac{1}{2} \mathrm{~km}=\frac{11}{2} \mathrm{~km}$

$$
\begin{aligned}
\text { Praseen sides to bus } & =12 \frac{3}{4} \mathrm{~km}=\frac{51}{4} \mathrm{~km} \\
\text { Praseen walks again } & =1 \frac{2}{3}=\frac{5}{3} \mathrm{~km} \\
\text { Total distance } & =\frac{11}{2}+\frac{51}{4}+\frac{5}{3} \\
& =\frac{66+153+20}{12}=\frac{239}{12} \\
& =\mathbf{1 9} \frac{\mathbf{1 1}}{\mathbf{1 2}} \mathbf{~ k m}
\end{aligned}
$$

EXERCISE 2.2

1. (i) $\frac{5}{11} \times \frac{11}{5}=\frac{55}{55}=\mathbf{1}$
(ii), (iii) Do yourself.
(iv) $3 \frac{1}{5} \times \frac{25}{32}=\frac{16}{5} \times \frac{25}{32}=\frac{5}{2}=\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$
(v), (vi), (vii), (viii), (ix), (x) Do yourself.
2. (i) $\frac{5}{6} \times \frac{32}{25} \times \frac{3}{2}=\frac{8}{5}=\mathbf{1} \frac{\mathbf{3}}{\mathbf{5}}$
(ii), (iii), (iv), (v), (vi) Do yourself.
3. (i) One-half of $₹ 124=\frac{1}{2}$ of $₹ 124=\frac{1}{2} \times ₹ 124=₹ \mathbf{6 2}$
(ii), (iii), (iv) Do yourself.
4. Cost of 1 kg rice $=₹ 44 \frac{2}{3}=₹ \frac{134}{3}$

Cost of $3 \frac{1}{3} \mathrm{~kg}$ rice $=\frac{134}{3} \times 3 \frac{1}{3}=\frac{134}{3} \times \frac{10}{3}=₹ \mathbf{1 4 8} \frac{\mathbf{8}}{\mathbf{9}}$
5. Speed of fox $=150 \frac{2}{3}$ mile/hour $=\frac{452}{3}$ mile/hour

Speed of panther $=\frac{452}{3} \times 10=\frac{4520}{3}=\mathbf{1 5 0 6} \frac{\mathbf{2}}{\mathbf{3}} \mathbf{~ m i l e} / \mathbf{h o u r}$
6. A farmer can put up a fence in one day $=\frac{1}{3} \mathrm{~km}$

A farmer can put up a fence in $6 \frac{2}{3}$ days $=\frac{1}{3} \times \frac{20}{3}=\frac{20}{9}=\mathbf{2} \frac{\mathbf{2}}{\mathbf{9}} \mathbf{~ k m}$
7. Johny spends on food and rent $=\frac{3}{5}$

Remaining part of his salary $=1-\frac{3}{5}=\frac{2}{5}$
Now, $\frac{1}{5}$ of $\frac{2}{5}=\frac{1}{5} \times \frac{2}{5}=\frac{2}{25}$
$\frac{2}{25}$ of ₹ $40,000=₹ \mathbf{3 2 0 0}$
So, Johny donates ₹ 3200 .
8. 1 marble weigh $=10 \frac{1}{2}$ grams $=\frac{21}{2}$ grams

230 marbles weighs $=\frac{21}{2} \times 230$ gram $=\mathbf{2 4 1 5}$ grams
9. A car can run in 1 L of petrol $=16 \frac{1}{4} \mathrm{~km}$ OR $\frac{65}{4} \mathrm{~km}$

A car can run in $5 \frac{2}{3} \mathrm{~L}$ of petrol $=\frac{65}{4} \times \frac{17}{65}=\frac{1105}{12}=\mathbf{9 2} \frac{\mathbf{1}}{\mathbf{1 2}} \mathbf{~ k m}$

EXERCISE 2.3

1. (i) The reciprocal of $\frac{3}{2}=\frac{\mathbf{2}}{\mathbf{3}}$
(ii), (iii), (iv) and (v) Do yourself.
2. (i) $\frac{4}{5} \div \frac{7}{15} \Rightarrow \frac{4}{5} \times \frac{15}{7}=\frac{12}{7}=1 \frac{\mathbf{5}}{\mathbf{7}}$
(ii), (iii), (iv), (v) Do yourself.
(vi) $3 \frac{4}{7} \div 1 \frac{5}{14} \Rightarrow \frac{25}{7} \div \frac{19}{14} \Rightarrow \frac{25}{7} \times \frac{14}{19}=\frac{50}{19}=\mathbf{2} \frac{\mathbf{1 2}}{\mathbf{1 9}}$
(vii), (viii), (ix) Do yourself.
3. A factory produced steel in a month $=6000 \frac{5}{12}=\frac{72005}{12}$ tons

A factory produced steel in a day $=\frac{72005}{12} \div 30$

$$
\begin{aligned}
& =\frac{72005}{12} \times \frac{1}{30}=\frac{12401}{72} \\
& =\mathbf{2 0 0} \frac{\mathbf{1}}{\mathbf{7 2}} \text { tons }
\end{aligned}
$$

4. The product of two numbers $=5 \frac{2}{3}=\frac{17}{3}$

$$
\text { One of them is }=2 \frac{4}{15}=\frac{34}{15}
$$

$$
\text { Other is }=\frac{17}{3} \div \frac{34}{15}=\frac{17}{3} \times \frac{15}{34}=\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}
$$

5. The number should be multiplied $\frac{5}{6} \div 3 \frac{4}{7}$

$$
=\frac{5}{6} \div \frac{25}{7}=\frac{5}{6} \times \frac{7}{25}=\frac{7}{\mathbf{3 0}}
$$

6. A boat can carry $=690 \mathrm{~kg}$

A box weight $=7 \frac{2}{3}=\frac{23}{3} \mathrm{~kg}$
Thus the boat can carry $=690 \div \frac{23}{3}$

$$
=\frac{690 \times 3}{23}=\mathbf{9 0} \text { boxes }
$$

7. Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{420 \frac{2}{5}}{4 \frac{1}{5}}=\frac{\frac{2102}{5}}{\frac{21}{5}}=\frac{2102}{21}=\mathbf{1 0 0} \frac{\mathbf{2}}{\mathbf{2 1}} \mathbf{~ k m} / \mathbf{h r}$
8. Area of rectangle $=83 \frac{3}{4} \mathrm{~m}^{2}=\frac{335}{4} \mathrm{~m}^{2}$

One side of rectangle $=12 \frac{1}{2} \mathrm{~m}=\frac{25}{2} \mathrm{~m}$
Other side of rectangle $=\frac{335}{4} \div \frac{25}{2}=\frac{335}{4} \times \frac{2}{25}=\frac{67}{10}$

$$
=6 \frac{7}{10} \mathrm{~m}
$$

9. Number of cans of juice $=\frac{20}{1 \frac{1}{3}}=\frac{20 \times 3}{4}=\mathbf{1 5}$ cans
10. Do yourself.
11. Decimal

EXERCISE 3.3

6. Twinkle had thread $=100 \mathrm{~m}$

Thread broke $=12.03 \mathrm{~m}$
Left thread $=100 \mathrm{~m}-12.03 \mathrm{~m}$

$$
=87.97 \mathrm{~m}
$$

7. Rahim was standing from a plane mirror $=5.36 \mathrm{ft}$

The distance of image from him $=5.36 \mathrm{ft}+5.36 \mathrm{ft}$

$$
=10.72 \mathrm{ft}
$$

8. Mrs Saasha bought flour $=4 \mathrm{~kg} 250 \mathrm{~g}$

Mrs Saasha bought nuts $=3 \mathrm{~kg} 50 \mathrm{~g}$
Mrs Saasha bought olive oil $=350 \mathrm{~g}$
Total weight did she buy $=4 \mathrm{~kg} 250 \mathrm{~g}+3 \mathrm{~kg} 50+350 \mathrm{~g}$ $=7 \mathrm{~kg} 650 \mathrm{~g}$
9. The length of triathlon $=10 \mathrm{~km}$

Kunal ran $=5.1 \mathrm{~km}$
Kunal cycled $=4.2 \mathrm{~km}$
Total of running and cycling $=5.1 \mathrm{~km}+4.2 \mathrm{~km}=9.3 \mathrm{~km}$
Rest distance $=10 \mathrm{~km}-9.3 \mathrm{~km}=\mathbf{0 . 7} \mathbf{~ k m}$
So, Kunal swam 0.7 km .
10. It must be added $301.5-294.315=7.185$
11. It must be subtracted $=90.1-9.09=\mathbf{8 1 . 0 1}$

EXERCISE 3.4

4. A fan rotates per minute $=123.5$

The fan adjusted 3.5 times more $=123.5 \times 3.5$

$$
=432.25 \text { per minute }
$$

5. A box of wood weighs $=13.3 \mathrm{~kg}$

15 boxes of wood weigh $=13.3 \times 15 \mathrm{~kg}=199.5 \mathbf{~ k g}$
6. Motor bike goes in $1 \mathrm{~L}=67.33 \mathrm{~km}$

Motor bike goes in $3.25 \mathrm{~L}=67.33 \times 3.25=\mathbf{2 1 8 . 8 2 5} \mathbf{~ k m}$
7. Charges for one unit $=₹ 4.28$

Charges for 49 units $=₹ 4.28 \times 49=₹ \mathbf{2 0 9 . 7 2}$
8. Mohan spent for rice $=₹ 36.30 \times 2.5=₹ 90.75$

Mohan spent for apples $=₹ 50.50 \times 4=₹ 202.00$
Mohan spent for petrol $=₹ 12.39 \times 79.03=₹ 979.18$
Mohan spent total $=₹ 90.75+₹ 202.00+₹ 979.18$ = ₹ 1271.93

EXERCISE 3.5

6. Cost of 31 eggs $=₹ 173.60$

Cost of $1 \mathrm{egg}=₹ 173.60 \div 31=₹ \mathbf{5 . 6 0}$
7. Numbr of sweet balls $=588.38 \mathrm{~g} \div 45.26=\mathbf{1 3}$
8. Total of rainfall in one month $=37.02 \mathrm{~mm}$

Rainfall in one day $=37.02 \mathrm{~mm} \div 30$

$$
=1.234 \mathrm{~mm}
$$

EXERCISE 4.1

4. (i) $\frac{1}{4} \times \frac{5}{5}=\frac{5}{20}$
(ii) $\frac{1 \times 9}{4 \times 9}=\frac{9}{36}$
(iii) Do yourself.
(iv) $\frac{1 \times 1000}{4 \times 1000}=\frac{\mathbf{1 0 0 0}}{\mathbf{4 0 0 0}}$
(v) $\frac{1 \times-25}{4 \times-25}=\frac{-\mathbf{2 5}}{\mathbf{- 1 0 0}}$
5. (i) $\frac{2}{10}=\frac{2 \times 1}{2 \times 5}=\frac{\mathbf{1}}{\mathbf{5}}$
(ii) $\frac{-36}{180}=\frac{-2 \times 2 \times 3 \times 3}{2 \times 2 \times 3 \times 3 \times 5}=\frac{-\mathbf{1}}{\mathbf{5}}$

2	36
2	18
3	9
3	3
	1

2	180
2	90
3	45
3	15
5	5
	1

(iii), (iv) Do yourself.
6. (i) $\frac{2}{3}=\frac{x}{135}$

By cross multiplication

$$
\begin{aligned}
2 \times 135 & =3 \times x \\
x & =\frac{2 \times 135}{3} \\
x & =2 \times 45 \\
x & =\mathbf{9 0}
\end{aligned}
$$

OR
(ii) $\frac{5}{x}=\frac{90}{216}$

By cross multiplication

$$
\begin{aligned}
90 \times x & =5 \times 216 \\
x & =\frac{5 \times 216}{90}
\end{aligned}
$$

$\Rightarrow \quad x=12$
(iii), (iv) Do yourself.
(v) $\frac{72}{81}=\frac{8}{x}$

By cross multiplication
i.e.,

$$
\begin{aligned}
72 \times x & =8 \times 81 \\
x & =\frac{8 \times 81}{72}
\end{aligned}
$$

OR

$$
x=\frac{81}{9}
$$

$$
x=9
$$

7. (i) $\frac{-144}{-504}=\frac{144}{504}$

$$
=\frac{2 \times 2 \times 2 \times 2 \times 3 \times 3}{2 \times 2 \times 2 \times 3 \times 3 \times 7}=\frac{2}{7}
$$

2	144
2	72
2	36
2	18
3	9
3	3
	1

2	504
2	252
2	126
3	63
3	21
7	7
	1

(ii) Do yourself.
(iii) $\frac{240}{-840}=\frac{24}{-84}$

$$
\begin{aligned}
& =\frac{2 \times 2 \times 2 \times 3}{-2 \times 2 \times 3 \times 7}=\frac{\mathbf{2}}{\mathbf{- 7}} \\
& \begin{array}{r|r|r}
2 & 24 \\
\hline 2 & 12 \\
\hline 2 & 6 \\
\hline 3 & 3 \\
\hline & 1
\end{array} \quad \begin{array}{rr}
2 & 84 \\
\hline 2 & 42 \\
\hline 3 & 21 \\
\hline 7 & 7 \\
\hline & 1
\end{array}
\end{aligned}
$$

(iv) $\frac{225}{625}=\frac{3 \times 3 \times 5 \times 5}{5 \times 5 \times 5 \times 5}=\frac{\mathbf{9}}{\mathbf{2 5}}$

5	225
5	45
3	9
3	3
	1

5	625
5	125
5	25
5	5
	1

EXERCISE 4.2
2. (i) $\frac{2 \times-28}{5 \times-28}=\frac{-\mathbf{5 6}}{\mathbf{- 1 4 0}}$
(ii) $\frac{2 \times 77}{5 \times 77}=\frac{\mathbf{1 5 4}}{\mathbf{3 8 5}}$
(iii) $\frac{2 \times-375}{5 \times-375}=\frac{-750}{-\mathbf{1 8 7 5}}$
(iv) $\frac{2 \times 250}{5 \times 250}=\frac{\mathbf{5 0 0}}{\mathbf{1 2 5 0}}$
(v) Do yourself.
3. (i) $\frac{5}{6}$ and $\frac{7}{9}$

LCM of 6 and 9 is 18 .

$$
\begin{aligned}
& \frac{5}{6}, \frac{7}{9} \\
& =\frac{5 \times 3,7 \times 2}{18}=\frac{\mathbf{1 5}}{\mathbf{1 8}}, \frac{\mathbf{1 4}}{\mathbf{1 8}}
\end{aligned}
$$

(ii) Do yourself.
(iii) $\frac{4}{5}, \frac{17}{20}, \frac{23}{40}$ and $\frac{11}{16}$

LCM of $5,20,40$ and 16 is 80 .

$$
\begin{aligned}
& =\frac{4 \times 16,17 \times 4,23 \times 2,11 \times 5}{80} \\
& =\frac{64,68,46,55}{80} \\
& =\frac{\mathbf{6 4}}{\mathbf{8 0}}, \frac{\mathbf{6 8}}{\mathbf{8 0}}, \frac{\mathbf{4 6}}{\mathbf{8 0}}, \frac{\mathbf{5 5}}{\mathbf{8 0}}
\end{aligned}
$$

4. Do yourself.
5. (i) $\frac{-9}{12}$ and $\frac{8}{-12}$

Because numerators are not equal.
Therefore

$$
\frac{-9}{12} \neq \frac{8}{-12}
$$

(ii) $\frac{-16}{20}$ and $\frac{20}{-25}$

LCM of 20 and 25 is 100 .
or

$$
=\frac{-16 \times 5,-20 \times 4}{100}=\frac{-80,-80}{100}
$$

$$
\frac{-80}{100}, \frac{-80}{100}
$$

Clearly
Therefore $\quad \frac{-16}{\mathbf{2 0}}=\frac{\mathbf{2 0}}{-\mathbf{2 5}}$
(iii) Do yourself.
(iv) $\frac{-8}{-14}$ and $\frac{13}{21}$

LCM of 14 and 21 is 42 .

$$
=\frac{8 \times 3,13 \times 2}{42}=\frac{24}{42}, \frac{26}{42}
$$

$$
\frac{24}{42} \neq \frac{26}{42} \quad[\because \text { Numerators are not equal }]
$$

Therefore $\quad \frac{-8}{-14} \neq \frac{13}{21}$
6. (i) $-\frac{4}{11}, \frac{3}{11} \Rightarrow \frac{\mathbf{3}}{\mathbf{1 1}}>\frac{-\mathbf{4}}{11} \quad \because 3>-4$
(ii) $-\frac{5}{8}, \frac{3}{4}$

LCM of 4 and 8 is 8 .

$$
=\frac{-5 \times 1,-3 \times 2}{8}=\frac{-5}{8}, \frac{-6}{8}, \Rightarrow \frac{-5}{8}>\frac{-3}{4}
$$

(iii) Do yourself.
(iv) $\frac{-4}{9}, \frac{-3}{-7}$

LCM of 7 and 9 is 63 .

$$
\begin{aligned}
\frac{(-4) \times 7,9 \times 3}{63} & =\frac{-28,27}{63}=\frac{-28}{63}, \frac{27}{63} \\
\frac{\mathbf{3}}{7} & >\frac{-\mathbf{4}}{\mathbf{9}}
\end{aligned}
$$

Hence,
7. (i) $\frac{-4}{7}, \frac{5}{-7}$

$$
\begin{array}{ll}
& \frac{-4}{7}, \frac{-5}{7} \\
\therefore & -5<-4 \\
\because & \frac{-5}{7}<\frac{-4}{7}
\end{array}
$$

(ii) Do yourself.
(iii) $\frac{16}{-5}, \frac{3}{1}$

LCM of 5 and 1 is 5 .

$$
=\frac{-16,3 \times 5}{5}=\frac{-16}{5}, \frac{15}{5}
$$

$\because \quad-16<15$
$\therefore \quad \frac{-16}{-5}<\frac{15}{5}$
(iv) Do yourself.
8. (i) $\frac{3}{-2}, \frac{3}{8}, \frac{-7}{4}, \frac{1}{10}$

LCM of $2,4,8$ and 10 is 40 .

$$
\begin{aligned}
& \frac{-3 \times 20,3 \times 5,-7 \times 10,1 \times 4}{40} \\
& \frac{-60}{40}, \frac{15}{40}, \frac{-70}{40}, \frac{4}{40} \\
& \frac{-7}{4}, \frac{\mathbf{3}}{-2}, \frac{\mathbf{1}}{\mathbf{1 0}}, \frac{\mathbf{3}}{\mathbf{8}}
\end{aligned}
$$

(ii) Do yourself.
9. (i) $\frac{-7}{2}, \frac{2}{-3}, \frac{5}{6}, \frac{2}{3}$

LCM of $2,3,6$ is 6 .

$$
\begin{aligned}
& \frac{-7 \times 3,-2 \times 2,5 \times 1,2 \times 2}{6} \\
& \frac{-21}{6}, \frac{-4}{6}, \frac{5}{6}, \frac{4}{6} \\
& \frac{5}{6}, \frac{2}{3}, \frac{2}{-3}, \frac{-7}{2}
\end{aligned}
$$

(ii) Do yourself.
12. (i) $\left|\frac{2}{5}-\frac{8}{9}\right|$

LCM of 5 and 9 is 45.

$$
\left|\frac{9 \times 2-8 \times 5}{45}\right|=\left|\frac{18-40}{45}\right|=\left|\frac{-22}{45}\right|=\frac{\mathbf{2 2}}{\mathbf{4 5}}
$$

(ii) $\left|\frac{7}{3}-\left(\frac{-8}{15}\right)\right|=\left|\frac{7}{3}+\frac{8}{15}\right|$ LCM of 3 and 15 is 15 .

$$
=\left|\frac{7 \times 5+8 \times 3}{15}\right|=\left|\frac{35+24}{15}\right|=\left|\frac{59}{15}\right|=\mathbf{3} \frac{\mathbf{1 4}}{\mathbf{1 5}}
$$

(iii) $\left|-10-\left(\frac{10}{-3}\right)\right|=\left|-10+\frac{10}{3}\right|=\left|\frac{-30+10}{3}\right|=\left|\frac{-20}{3}\right|=\frac{20}{3}=\mathbf{6} \frac{\mathbf{2}}{\mathbf{3}}$
5.

Operations on
 Rational Numbers

EXERCISE 5.1

1. (i) $\frac{7}{13}+\frac{(-6)}{13}$

$$
\frac{7-6}{13}=\frac{1}{13}
$$

(ii), (iii) Do yourself.
(iv) $\frac{-23}{28}+\frac{5}{-28}=\frac{-23}{28}+\frac{-5}{28}$

$$
\begin{aligned}
& =\frac{-23+(-5)}{28} \\
& =\frac{-23-5}{28}=\frac{-28}{28}=-\mathbf{1}
\end{aligned}
$$

2. (i) $\frac{-6}{8}+\frac{2}{3}$

The LCM of 8 and 3 is 24 .

$$
=\frac{-6 \times 3+2 \times 8}{24}=\frac{-18+16}{24}=\frac{-2}{24}=\frac{-\mathbf{1}}{\mathbf{1 2}}
$$

(ii), (iii) Do yourself.
(iv) $\frac{-7}{26}+\frac{-11}{39}$

The LCM of 26 and 39 is 78 .

$$
\begin{aligned}
& =\frac{(-7) \times 3+(-11) \times 2}{78}=\frac{-21+(-22)}{78} \\
& =\frac{-21-22}{78}=\frac{-\mathbf{4 3}}{\mathbf{7 8}}
\end{aligned}
$$

3. (i) $\frac{4}{11}+\frac{-5}{8}=\frac{-5}{8}+\frac{4}{11}$

$$
\begin{aligned}
\frac{32-55}{88} & =\frac{-55+32}{88} \\
& =\frac{-23}{88}=\frac{-23}{88} \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
4. (i) $\frac{-3}{4}+\left(\frac{2}{5}+\frac{-4}{7}\right)=\left(\frac{-3}{4}+\frac{2}{5}\right)+\frac{-4}{7}$

$$
\begin{aligned}
\frac{-3}{4}+\frac{(14-20)}{35} & =\frac{(-15+8)}{20}+\frac{-4}{7} \\
\frac{-3}{4}-\frac{6}{35} & =\frac{-7}{20}-\frac{4}{7} \\
\frac{-105-24}{140} & =\frac{-49-80}{140} \\
\frac{-129}{140} & =\frac{-129}{140} \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
5. (i) $\frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3}$

LCM of 3,5 and 15 is 15 .

$$
\begin{aligned}
& =\frac{2 \times 3+8 \times 5+(-11)+4 \times 3+(-2) \times 5}{15} \\
& =\frac{6+40-11+12-10}{15}=\frac{\mathbf{3 7}}{\mathbf{1 5}}
\end{aligned}
$$

(ii) Do yourself.
6. (i) The additive inverse of $\frac{1}{4}$ is $\frac{-1}{4}$.
(ii) The additive inverse of $\frac{-3}{4}$ is $\frac{3}{4}$.
(iii) The additive inverse of $\frac{-7}{-9}$ is $\frac{-7}{9}$.
(iv) The additive inverse of $\frac{16}{-15}$ is $\frac{16}{15}$.
7. (i) $0+\frac{9}{11}=\frac{9}{11}$
(ii), (iii), (iv) Do yourself.

EXERCISE 5.2

2. (i) $\frac{13}{15}-\frac{12}{25}$

LCM of 15 and 25 is 75 .

$$
=\frac{13 \times 5-12 \times 3}{75}=\frac{65-36}{75}=\frac{\mathbf{2 9}}{\mathbf{7 5}}
$$

(ii), (iii) Do yourself.
(iv) $\frac{-6}{13}-\frac{-7}{15}=\frac{-6}{13}+\frac{7}{15}$

The L.C.M. of 13 and 15 is 195.

$$
=\frac{(-6) \times 15+7 \times 13}{195}=\frac{-90+91}{195}=\frac{\mathbf{1}}{\mathbf{1 9 5}}
$$

3. (i) $\frac{7}{8}-\frac{5}{8}=\frac{7-5}{8}=\frac{2}{8}=\frac{1}{4}$

$$
\begin{aligned}
\frac{5}{8}-\frac{7}{8} & =\frac{5-7}{8}=\frac{-2}{8}=\frac{-1}{4} \\
\frac{1}{4} & \neq-\frac{1}{4}
\end{aligned}
$$

(ii) Do yourself.
(iii) $\frac{8}{33}-\frac{5}{22}$

The LCM of 22 and 33 is 66 .

$$
=\frac{8 \times 2-5 \times 3}{66}
$$

$$
\begin{aligned}
& =\frac{16-15}{66}
\end{aligned}=\frac{1}{66}
$$

4. Let the other number be x.

$$
\begin{aligned}
x+\frac{-15}{7} & =-8 \\
x-\frac{15}{7} & =-8 \\
x & =-8+\frac{15}{7} \\
x & =\frac{-56+15}{7}=\frac{-\mathbf{4 1}}{7}
\end{aligned}
$$

5. Suppose we add $\frac{a}{b}$ to $\frac{-7}{8}$ to make it $\frac{5}{9}$

$$
\begin{aligned}
\frac{a}{b}+\frac{-7}{8} & =\frac{5}{9} \\
\frac{a}{b} & =\frac{5}{9}+\frac{7}{8}=\frac{40+63}{72}=\frac{\mathbf{1 0 3}}{\mathbf{7 2}}
\end{aligned}
$$

6. Suppose we subtract $\frac{a}{b}$ from $\frac{26}{33}$ to make it $\frac{-5}{11}$

$$
\begin{aligned}
\frac{26}{33}-\frac{a}{b} & =\frac{-5}{11} \\
\frac{26}{33}+\frac{5}{11} & =\frac{a}{b} \\
\frac{26+5 \times 3}{33} & =\frac{a}{b} \\
\Rightarrow \quad \frac{a}{b} & =\frac{26+15}{33}=\frac{\mathbf{4 1}}{\mathbf{3 3}}
\end{aligned}
$$

7. (i) $\left(\frac{-8}{9}-\frac{11}{4}\right)-\frac{-4}{12}, \frac{-8}{9}-\left(\frac{11}{4}-\frac{-4}{12}\right)$

$$
\begin{aligned}
\text { LHS } & =\left(\frac{-8 \times 4-11 \times 9}{36}\right)+\frac{4}{12} \\
& =\frac{-32-99}{36}+\frac{4}{12} \\
& =\frac{-32-99+12}{36}=\frac{-119}{36} \\
\text { RHS } & =\frac{-8}{9}-\left(\frac{11}{4}-\frac{-4}{12}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-8}{9}-\left(\frac{11}{4}+\frac{4}{12}\right) \\
& =\frac{-8}{9}-\left(\frac{11 \times 3+4 \times 1}{12}\right) \\
& =\frac{-8}{9}-\left(\frac{33+4}{12}\right) \\
& =\frac{-8}{9}-\frac{37}{12} \\
& =\frac{-8 \times 4-37 \times 3}{36} \\
& =\frac{-32-111}{36}=\frac{-143}{36}
\end{aligned}
$$

Thus,

LHS \neq RHS

(ii) Do yourself
8. (i) $\frac{-2}{3}+\frac{5}{9}-\frac{-7}{6}=\frac{-2}{3}+\frac{5}{9}+\frac{7}{6}$

The LCM of 3,6 and 9 is 18 .

$$
\begin{aligned}
& =\frac{-2 \times 6+5 \times 2+7 \times 3}{18}=\frac{-12+10+21}{18} \\
& =\frac{31-12}{18}=\frac{\mathbf{1 9}}{\mathbf{1 8}}
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
9. (i) $\frac{-4}{13}-\frac{-3}{26}$

$$
=\frac{-4}{13}+\frac{3}{26}=\frac{(-4) \times 2+3 \times 1}{26}=\frac{-8+3}{26}=\frac{-\mathbf{5}}{\mathbf{2 6}}
$$

(ii) $\frac{-5}{14}+x=-1$

$$
\begin{aligned}
\frac{-5}{14}+1 & =-x \\
\Rightarrow \quad \frac{5}{14}-1 & =x \\
x & =\frac{5-14}{14}=\frac{-9}{14}
\end{aligned}
$$

(iii) $\frac{-7}{9}+x=3$

$$
\begin{aligned}
& x=3+\frac{7}{9} \\
& x=\frac{27+7}{9}=\frac{\mathbf{3 4}}{\mathbf{9}}
\end{aligned}
$$

(iv) $x+\frac{15}{23}=4$

$$
\begin{aligned}
x & =4-\frac{15}{23} \\
x & =\frac{4 \times 23-15}{23} \\
& =\frac{92-15}{23}=\frac{\mathbf{7 7}}{\mathbf{2 3}}
\end{aligned}
$$

EXERCISE 5.3

1. (i) $\frac{3}{11}$ by $\frac{2}{5} \Rightarrow \frac{3}{11} \times \frac{2}{5}=\frac{\mathbf{6}}{\mathbf{5 5}}$
(ii), (iii), Do yourself.
(iv) $\frac{25}{-9}$ by $\frac{3}{-10}$

$$
\frac{25}{-9} \times \frac{3}{-10}=\frac{75}{90}=\frac{\mathbf{5}}{\mathbf{6}}
$$

(v) Do yourself.
(vi) $\left(\frac{9}{-11}\right)$ by $\frac{22}{-27}=\frac{9}{-11} \times \frac{22}{-27}$

$$
=\frac{9}{11} \times \frac{22}{27}=\frac{\mathbf{2}}{\mathbf{3}}
$$

(vii), (viii) Do yourself.
2. (i) $\frac{3}{20} \times \frac{4}{5}=\frac{\mathbf{3}}{\mathbf{2 5}}$
(ii) Do yourself.
(iii) $\frac{-9}{8} \times \frac{-16}{3}=\frac{9}{8} \times \frac{16}{3}=3 \times 2=6$
(iv) Do yourself.
3. (i) $\frac{4}{15} \times \frac{9}{5} \times \frac{50}{3}=4 \times 2=\mathbf{8}$
(ii) Do yourself.
(iii) $\left(\frac{-3}{2} \times \frac{4}{5}\right)+\left(\frac{9}{5} \times \frac{-10}{3}\right)-\left(\frac{1}{2} \times \frac{3}{4}\right)$

$$
\begin{aligned}
& =\frac{-6}{5}+\frac{(-6)}{1}-\frac{3}{8} \\
& =\frac{-6}{5}-\frac{6}{1}-\frac{3}{8} \\
& =-\left(\frac{6}{5}+\frac{6}{1}+\frac{3}{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(\frac{48+240+15}{40}\right) \\
& =\frac{-303}{40}=-\mathbf{7} \frac{\mathbf{2 3}}{\mathbf{4 0}}
\end{aligned}
$$

(iv) Do yourself.
4. $\left(\frac{2}{9}+\frac{-3}{11}\right) \times\left(\frac{5}{2}+\frac{7}{8}\right)$

$$
\begin{aligned}
& =\left(\frac{2 \times 11-9 \times 3}{99}\right) \times\left(\frac{20+7}{8}\right) \\
& =\frac{22-27}{99} \times \frac{27}{8}
\end{aligned}
$$

$$
\frac{-5 \times 27}{99 \times 8}=\frac{-\mathbf{1 5}}{\mathbf{8 8}}
$$

5. $\left(\frac{-3}{2}-\frac{4}{15}\right) \times\left(\frac{3}{4}-\frac{7}{12}\right)$

$$
\begin{aligned}
& =\left(\frac{-3 \times 15-4 \times 2}{30}\right) \times\left(\frac{9-7}{12}\right) \\
& =\left(\frac{-45-8}{30}\right) \times\left(\frac{2}{12}\right) \\
& =\frac{-53}{30} \times \frac{2}{12}=\frac{-\mathbf{5 3}}{\mathbf{1 8 0}}
\end{aligned}
$$

6. (i) $\left(\frac{12}{8} \times \frac{16}{10}\right)+\left(\frac{-3}{9} \times \frac{18}{-16}\right)$

$$
\begin{aligned}
& =\frac{12}{5}+\frac{3}{8}=\frac{12 \times 8+3 \times 5}{40} \\
& =\frac{96+15}{40}=\frac{\mathbf{1 1 1}}{\mathbf{4 0}}
\end{aligned}
$$

(ii) Do yourself.
(iii) $\left(\frac{-4}{15} \times \frac{-5}{-8}\right)-\left(\frac{3}{5} \times \frac{6}{-15}\right)+\left(\frac{5}{-8} \times \frac{16}{15}\right)$

$$
=\frac{-1}{6}+\frac{6}{25}-\frac{2}{3}=-\left(\frac{1}{6}+\frac{2}{3}\right)+\frac{6}{25}
$$

$$
=-\left(\frac{1}{6}+\frac{2}{3}\right)+\frac{6}{25}=-\left(\frac{1+4}{6}\right)+\frac{6}{25}
$$

$$
=\frac{-5}{6}+\frac{6}{25}=\frac{-125+36}{150}=\frac{-\mathbf{8 9}}{\mathbf{1 5 0}}
$$

(iv) Do yourself.
7. $3 \frac{5}{7} \times 16 \frac{1}{2}=\frac{26}{7} \times \frac{33}{2}=\frac{13 \times 33}{7}=₹ \mathbf{6 1} \frac{\mathbf{2}}{7}$
8. Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
\begin{aligned}
65 \frac{1}{3} & =\frac{x}{6 \frac{1}{2}} \\
\Rightarrow \quad \frac{196}{3} & =\frac{x}{\frac{13}{2}} \quad \Rightarrow \quad \frac{196}{3}=\frac{2 x}{13} \\
x & =\mathbf{4 2 4} \frac{\mathbf{2}}{\mathbf{3}} \mathbf{~ k m}
\end{aligned}
$$

EXERCISE 5.4

2. Verify the property

$$
x \times y=y \times x
$$

(i) $x=\frac{-1}{5}, y=\frac{2}{7}$

$$
\begin{aligned}
\frac{-1}{5} \times \frac{2}{7} & =\frac{2}{7} \times \frac{-1}{5} \\
\frac{-2}{35} & =\frac{-2}{35}
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
3. Verify the property

$$
a \times(b \times c)=(a \times b) \times c
$$

(i) $a=\frac{1}{3}, b=\frac{-2}{3}, c=\frac{4}{3}$

$$
\begin{aligned}
\frac{1}{3} \times\left(\frac{-2}{3} \times \frac{4}{3}\right) & =\left(\frac{1}{3} \times \frac{-2}{3}\right) \times \frac{4}{3} \\
\frac{1}{3} \times \frac{-2}{3} \times \frac{4}{3} & =\frac{1}{3} \times \frac{-2}{3} \times \frac{4}{3} \\
\frac{-\mathbf{8}}{\mathbf{2 7}} & =\frac{-\mathbf{8}}{\mathbf{2 7}}
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
4. Verify the property

$$
a \times(b+c)=(a \times b)+(a \times c)
$$

(i) $a=\frac{5}{6}, b=\frac{-3}{4}, c=\frac{7}{8}$

$$
\begin{aligned}
\frac{5}{6} \times\left(\frac{-3}{4}+\frac{7}{8}\right) & =\left(\frac{5}{6} \times \frac{-3}{4}\right)+\left(\frac{5}{6} \times \frac{7}{8}\right) \\
\frac{5}{6} \times\left(\frac{-6+7}{8}\right) & =\left(\frac{-5}{8}\right)+\frac{35}{48} \\
\frac{5}{6} \times \frac{1}{8} & =\frac{-5}{8}+\frac{35}{48}
\end{aligned}
$$

$$
\begin{array}{ll}
& \frac{5}{48}=\frac{35-30}{48} \\
\Rightarrow & \frac{\mathbf{5}}{\mathbf{4 8}}=\frac{\mathbf{5}}{\mathbf{4 8}} \\
\text { (ii) Do yourself. } &
\end{array}
$$

5. $x \times(y-z)=x \times y-x \times z$
(i) $x=\frac{1}{2}, y=\frac{3}{4}, z=\frac{-4}{5}$

$$
\begin{aligned}
\frac{1}{2} \times\left(\frac{3}{4}-\frac{-4}{5}\right) & =\frac{1}{2} \times \frac{3}{4}-\frac{1}{2} \times\left(\frac{-4}{5}\right) \\
\frac{1}{2} \times\left(\frac{15+16}{20}\right) & =\frac{3}{8}+\frac{4}{10} \\
\frac{31}{40} & =\frac{15+16}{40} \\
\frac{\mathbf{3 1}}{\mathbf{4 0}} & =\frac{\mathbf{3 1}}{\mathbf{4 0}}
\end{aligned}
$$

(ii) Do yourself.
6. (i) Multiplicative inverse of 15 is $\frac{\mathbf{1}}{\mathbf{1 5}}$.
(ii) Multiplicative inverse of -16 is $\frac{\mathbf{1}}{-\mathbf{1 6}}$.
(iii) Multiplicative inverse of $\frac{5}{6}$ is $\frac{\mathbf{6}}{\mathbf{5}}$.
(iv) Multiplicative inverse of $\frac{3}{7} \times \frac{4}{9}$ is $\frac{\mathbf{2 1}}{\mathbf{4}}$.
7. (i) $\left(\frac{1}{-4}\right)^{-1}=-4$
(ii) $\left(\frac{-4}{6} \times \frac{3}{5}\right)^{-1}=\left(\frac{-2}{5}\right)^{-1}=\frac{\mathbf{5}}{-2}$
(iii) $\left(\frac{-7}{3}\right)^{-1}=\frac{3}{-7}$

EXERCISE 5.5

2. (i) $\frac{-4}{6} \div \frac{3}{2}=\frac{-4}{6} \times \frac{2}{3}=\frac{-4}{9}$
(ii) Do yourself.
(iii) $\frac{-15}{7} \div \frac{-30}{1}=\frac{-15}{7} \times \frac{1}{-30}=\frac{\mathbf{1}}{\mathbf{1 4}}$
(iv) $-25 \div\left(\frac{-5}{6}\right) \Rightarrow \frac{-25}{1} \times \frac{6}{-5}=\mathbf{3 0}$
(v) Do yourself.
(vi) $\left(\frac{-16}{35}\right) \div\left(\frac{-15}{14}\right)=\frac{-16}{35} \times \frac{14}{-15}=\frac{16 \times 14}{35 \times 15}=\frac{\mathbf{3 2}}{\mathbf{7 5}}$
(vii) Do yourself.
(viii) $\left(\frac{-7}{12}\right) \div\left(\frac{-2}{3}\right)=\frac{-7}{12} \times \frac{3}{-2}=\frac{\mathbf{7}}{\mathbf{8}}$
3. Let the other number be x.

$$
\begin{aligned}
-\frac{4}{15} \times x & =\frac{-8}{9} \\
x & =\frac{-8}{9} \times \frac{15}{-4} \\
x & =\frac{\mathbf{1 0}}{\mathbf{3}}
\end{aligned}
$$

4. $x \times \frac{-15}{28}=\frac{-5}{7}$

$$
\begin{aligned}
& x=\frac{-5}{7} \times \frac{28}{-15} \\
& x=\frac{\mathbf{4}}{\mathbf{3}}
\end{aligned}
$$

5. Verify that $(x \div y) \times z \neq x \div(y \times z)$

Taking

$$
\begin{aligned}
x & =\frac{8}{15}, y=\frac{2}{3}, z=\frac{4}{10} \\
\left(\frac{8}{15} \div \frac{2}{3}\right) \times \frac{4}{10} & \neq \frac{8}{15} \div\left(\frac{2}{3} \times \frac{4}{10}\right) \\
\left(\frac{8}{15} \times \frac{3}{2}\right) \times \frac{4}{10} & \neq \frac{8}{15} \div \frac{4}{15} \\
\frac{\mathbf{8}}{\mathbf{2 5}} & \neq \mathbf{2}
\end{aligned}
$$

6. (i) $\frac{13}{5} \div \frac{26}{15}=\frac{26}{15} \div \frac{13}{5}$

$$
\begin{aligned}
\frac{13}{5} \times \frac{15}{26} & =\frac{26}{15} \times \frac{5}{13} \\
\frac{\mathbf{3}}{\mathbf{2}} & \neq \frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

(ii), (iii) Do yourself.

$$
\text { (iv) } \begin{aligned}
&\left(\frac{-6}{15}\right) \div\left(\frac{7}{30}\right)=\left(\frac{7}{30}\right) \div\left(\frac{-6}{15}\right) \\
&-\frac{6}{15} \times \frac{30}{7}=\frac{7}{30} \times \frac{15}{-6} \\
& \frac{-12}{7} \neq \frac{7}{-12}
\end{aligned}
$$

7. Sum $=\frac{65}{13}+\frac{5}{7}$

Subtract $=\frac{65}{13}-\frac{5}{7}$

$$
\begin{aligned}
& =5+\frac{5}{7} \\
& =\frac{40}{7}
\end{aligned}
$$

$$
\begin{aligned}
& =5-\frac{5}{7} \\
& =\frac{35-5}{7}=\frac{30}{7}
\end{aligned}
$$

Divide $=\frac{40}{7} \div \frac{30}{7}=\frac{40}{7} \times \frac{7}{30}=\frac{\mathbf{4}}{\mathbf{3}}$
8. $\operatorname{Sum}=\frac{13}{5}+\frac{-6}{15}$

Product $=\frac{-29}{7} \times \frac{1}{-2}=\frac{29}{14}$

$$
\begin{aligned}
& =\frac{13}{5}-\frac{6}{15}=\frac{13}{5}-\frac{2}{5} \\
& =\frac{11}{5}
\end{aligned}
$$

$$
\begin{aligned}
\text { Divide } & =\frac{11}{5} \div \frac{29}{14} \\
& =\frac{11}{5} \times \frac{14}{29}=\frac{154}{145}
\end{aligned}
$$

9. $\frac{-35}{6} \div x=\frac{-15}{2}$

$$
\begin{aligned}
\frac{35}{6} \times \frac{1}{x} & =\frac{15}{2} \\
x & =\frac{35 \times 2}{6 \times 15} \\
x & =\frac{7}{9}
\end{aligned}
$$

10. Cost of per meter cloth $=\frac{65 \frac{1}{2}}{3 \frac{2}{5}}=\frac{\frac{131}{2}}{\frac{17}{5}}=\frac{131}{2} \times \frac{5}{17}$

$$
=\frac{655}{34}=₹ \mathbf{1 9} \frac{9}{34}
$$

11. Length of cloth required for each pair $=\frac{60}{25}=\mathbf{2 . 4}$ metre.
12. (i) $\frac{9}{8} \div x=\frac{6}{5}$

$$
\begin{aligned}
\frac{9}{8} \times \frac{1}{x} & =\frac{6}{5} \\
8 \times 6 \times x & =9 \times 5 \\
x & =\frac{9 \times 5}{6 \times 8} \\
& =\frac{15}{16}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(-15) \div x=\frac{-6}{5}$

$$
\begin{aligned}
-15 \times \frac{1}{x} & =\frac{-6}{5} \\
-6 \times x & =5 \times-15 \\
x & =\frac{5 \times 15}{6} \\
x & =\frac{\mathbf{2 5}}{\mathbf{2}}
\end{aligned}
$$

13. Verify $(x \times y)^{-1}=x^{-1} \times y^{-1}$
(i) $x=\frac{11}{23}, y=\frac{-17}{5}$

$$
\begin{aligned}
\left(\frac{11}{23} \times \frac{-17}{5}\right)^{-1} & =\left(\frac{11}{23}\right)^{-1} \times\left(\frac{-17}{5}\right)^{-1} \\
\frac{23}{11} \times \frac{5}{-17} & =\frac{23}{11} \times \frac{5}{-17}
\end{aligned}
$$

(ii) Do yourself.

EXERCISE 5.6

2. The rational number between -5 and $-4=\frac{-5-4}{2}=\frac{-9}{2}$
3. The rational number between -7 and $-6=\frac{-7-6}{2}=\frac{-13}{2}$

Now a rational number between $\frac{-13}{2}$ and -6 .

$$
\begin{aligned}
\frac{1}{2}\left\{\frac{-13}{2}-6\right\} & =\frac{1}{2}\left\{\frac{-25}{2}\right\} \\
& =\frac{-25}{4}
\end{aligned}
$$

A rational number between $\frac{-13}{2}$ and -7 .

$$
\begin{aligned}
\frac{1}{2}\left\{\frac{-13}{2}-7\right\} & =\frac{1}{2}\left\{\frac{-27}{2}\right\} \\
& =\frac{-27}{4}
\end{aligned}
$$

The desired rational numbers are $\frac{-27}{4}, \frac{-13}{2}, \frac{-25}{4}$.
4. The rational number between -1 and $1=\frac{-1+1}{2}=\frac{0}{2}=0$

$$
-1<0<1
$$

Now a rational number between -1 and 0 .

$$
\begin{aligned}
& =\frac{1}{2}\{-1+0\}=\frac{-1}{2} \\
& -1<\frac{-1}{2}<0<1
\end{aligned}
$$

A rational number between 0 and $1=\frac{0+1}{2}=\frac{1}{2}$

$$
-1<-\frac{1}{2}<0<\frac{1}{2}<1
$$

A rational number between $\frac{1}{2}$ and $0=\frac{\frac{1}{2}+0}{2}=\frac{1}{4}$

$$
-1<-\frac{1}{2}<0<\frac{1}{4}<\frac{1}{2}<1
$$

A rational number between 0 and $-\frac{1}{2}=\frac{0-\frac{1}{2}}{2}=\frac{-1}{4}$

$$
-1<\frac{-1}{2}<\frac{-1}{4}<0<\frac{1}{4}<\frac{1}{2}<1
$$

The desired rational numbers are $\frac{-1}{2}, \frac{-1}{4}, 0, \frac{1}{4}, \frac{1}{2}$.
5. 4 rational numbers between $\frac{3}{4}$ and $\frac{2}{3}$, firstly equating the denominator of both, we get $\frac{9}{12}$ and $\frac{8}{12}$
$\frac{8}{12}<\frac{9}{12}$, the rational number could be $\frac{8+9}{12 \times 2}=\frac{17}{24}$, equating denominator of both, we get $\frac{16}{24}<\frac{17}{24}<\frac{18}{24}$ other is $\frac{17+18}{24 \times 2}=\frac{35}{48}$, another is $\frac{16+17}{24 \times 2}=\frac{33}{48}$ another is $\frac{33+34}{48 \times 2}=\frac{67}{96}$ The desired four rational numbers are $\frac{17}{24}, \frac{\mathbf{3 5}}{48}, \frac{\mathbf{3 3}}{48}$ and $\frac{23}{32}$.

Let's Recall

3. (b) The required rational number

$$
\begin{aligned}
\frac{-7}{11} \times x & =\frac{28}{33} \Rightarrow x=\frac{28}{33} \times \frac{11}{-7} \\
x & =\frac{-4}{3}
\end{aligned}
$$

Rational number is $\frac{-4}{3}$.

6. Exponents and Powers

EXERCISE 6.1

2. (i) $\left(\frac{3}{7}\right)^{2}=\frac{3 \times 3}{7 \times 7}=\frac{\mathbf{9}}{49}$
(ii) Do yourself.
(iii) $\left(\frac{-2}{3}\right)^{4}=\frac{-2 \times-2 \times-2 \times-2}{3 \times 3 \times 3 \times 3}=\frac{\mathbf{1 6}}{\mathbf{8 1}}$
3. (i) $\left(\frac{3}{5}\right)^{4} \times\left(\frac{1}{3}\right)^{3}=\frac{3 \times 3 \times 3 \times 3 \times 1 \times 1 \times 1}{5 \times 5 \times 5 \times 5 \times 3 \times 3 \times 3}=\frac{\mathbf{3}}{\mathbf{6 2 5}}$
(ii) Do yourself.
(iii) $\left(\frac{1}{3}\right)^{4} \div\left(\frac{1}{9}\right)^{6}$

$$
=\frac{1 \times 1 \times 1 \times 1}{3 \times 3 \times 3 \times 3} \times \frac{9 \times 9 \times 9 \times 9 \times 9 \times 9}{1 \times 1 \times 1 \times 1 \times 1 \times 1}=\frac{6561}{1}=6561
$$

(iv) $(-2)^{5} \div\left(\frac{-1}{3}\right)^{3}=(-2)^{5} \times\left(\frac{-3}{1}\right)^{3}$

$$
\begin{aligned}
& =-2 \times-2 \times-2 \times-2 \times-2 \times-3 \times-3 \times-3 \\
& =32 \times 27 \\
& =\mathbf{8 6 4}
\end{aligned}
$$

4. (i) $\left(\frac{3}{4}\right)^{3} \times\left(\frac{2}{3}\right)^{2}=\frac{3 \times 3 \times 3 \times 2 \times 2}{4 \times 4 \times 4 \times 3 \times 3}=\frac{\mathbf{3}}{16}$
(ii) $\left(-\frac{1}{2}\right)^{3} \times 2^{3} \times\left(\frac{3}{4}\right)^{2}=\frac{-1}{8} \times 8 \times \frac{9}{16}=\frac{-9}{16}$
(iii) $\left[\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{4}\right)^{3}\right] \times 2^{3}=\left[\frac{1}{4}-\frac{1}{64}\right] \times 8$

$$
=\frac{15}{64} \times 8
$$

$$
=\frac{15}{8}
$$

(iv) $\left(3^{2}-2^{2}\right) \div\left(\frac{1}{5}\right)^{2}$

$$
\begin{aligned}
& (9-4) \div \frac{1}{5 \times 5} \\
& 5 \div \frac{1}{25}=5 \times \frac{25}{1}=\mathbf{1 2 5}
\end{aligned}
$$

5. (i) $\frac{1}{243}=\frac{1}{3^{5}}=\left(\frac{\mathbf{1}}{\mathbf{3}}\right)^{\mathbf{5}}$
(ii) $\frac{-16}{729}=\frac{-(2)^{4}}{\mathbf{(3)}^{6}}$
(iii) $\frac{-625}{14641}=-\left(\frac{\mathbf{5}}{\mathbf{1 1}}\right)^{4}$
(iv) $\frac{-2401}{-256}=\frac{2401}{256}=\left(\frac{7}{4}\right)^{4}$
6. (i) $(-3)^{5}=-243$
(ii) Do yourself.

$$
\text { Reciprocal }=\frac{-1}{243}
$$

(iii) $\left(-\frac{1}{5}\right)^{8} \div\left(\frac{1}{5}\right)^{2}=\left(+\frac{1}{5}\right)^{6}=\frac{1}{15625}$

$$
\text { Reciprocal = } 15625
$$

(iv)

$$
\begin{aligned}
\left(\frac{3}{7}\right)^{3} \times\left(\frac{7}{3}\right)^{5} & =\left(\frac{3}{7}\right)^{3} \times\left(\frac{3}{7}\right)^{-5} \\
& =\left(\frac{3}{7}\right)^{-2}=\left(\frac{7}{3}\right)^{2}=\frac{49}{9} \\
\text { Reciprocal } & =\frac{9}{49}
\end{aligned}
$$

7. (i) $2^{3} \times 2^{4}=2^{x}$

$$
\begin{aligned}
2^{3+4} & =2^{x} \\
2^{7} & =2^{x} \\
x & =7
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(-4)^{9} \div(-4)^{3}=(-4)^{x}$

$$
\begin{aligned}
(-4)^{9-3} & =(-4)^{x} \\
(-4)^{6} & =(-4)^{x} \\
x & =6
\end{aligned}
$$

(v) $\frac{8^{13}}{8^{19}}=\frac{1}{8^{x}}$

By cross multiplication, we get.

$$
\begin{aligned}
& 8^{13+x}=8^{19} \\
& \Rightarrow \quad 13+x=19 \\
& \Rightarrow \quad x=19-13=6 \\
& \text { (vi) }(-4)^{11} \div(-4)^{15}=\frac{1}{(-4)^{x}} \\
& (-4)^{11-15}=\frac{1}{(-4)^{x}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
& & (-4)^{-4} & =\frac{1}{(-4)^{x}} \\
\Rightarrow & \frac{1}{(-4)^{4}} & =\frac{1}{(-4)^{x}} \\
\Rightarrow & x & =4
\end{array}
$$

EXERCISE 6.2

1. (i) $3.27 \times 10^{6}=\mathbf{3 2 7 0 0 0 0}$
(ii), (iii) Do yourself.
(iv) $3.127 \times 10^{-7}=\mathbf{0 . 0 0 0 0 0 0 3 1 2 7}$
(v) Do yourself.
2. (i) $476000=\mathbf{4 . 7 6} \times \mathbf{1 0}^{\mathbf{5}}$
(ii) $8460 \times 10^{3}=\mathbf{8 . 4 6} \times \mathbf{1 0}^{\mathbf{6}}$
(iii) $0.00025=\mathbf{2 . 5} \times \mathbf{1 0}^{-4}$
(iv) $\frac{4}{100000}=\frac{4}{10^{5}}=\mathbf{4} \times \mathbf{1 0}^{-\mathbf{5}}$
(v) $3246=\mathbf{3 . 2 4 6} \times \mathbf{1 0}^{\mathbf{3}}$
3. (i) $6.5 \times 10^{-6}=\mathbf{0 . 0 0 0 0 0 6 5}$
(ii) Do yourself.
(iii) $5.6146929 \times 10^{7}=\mathbf{5 6 1 4 6 9 2 9}$
(iv), (v) Do yourself.
4. (i) $980000000, n=8=\mathbf{9 . 8} \times \mathbf{1 0}^{\mathbf{8}}$
(ii), (iii) Do yourself.
(iv) $10700000000, n=9=\mathbf{1 0 . 7} \times \mathbf{1 0}^{\mathbf{9}}$
5. (i) $1050000=1.05 \times \mathbf{1 0}^{\mathbf{6}}$
(ii) $1353000000=\mathbf{1 . 3 5 3} \times \mathbf{1 0}^{9}$ $1361000000=1.361 \times \mathbf{1 0}^{9}$
(iii) $1027000000=\mathbf{1 . 0 2 7} \times \mathbf{1 0}^{9}$

$$
531200000=\mathbf{5 . 3 1 2} \times \mathbf{1 0}^{\mathbf{8}}
$$

$$
495800000=4.958 \times 10^{\mathbf{8}}
$$

(iv) $\frac{1}{1000000}=\frac{1}{10^{6}}=\mathbf{1} \times \mathbf{1 0}^{-6}$

Let's Recall

6. (b) $\left[\frac{1}{x^{x}}+\frac{1}{y^{y}}\right]$

$$
\text { If } x=2 \text { and } y=3
$$

$$
=\left[\frac{1}{2^{2}}+\frac{1}{3^{3}}\right]
$$

Putting the value of x and y, we get

$$
\begin{aligned}
& =\left[\frac{1}{4}+\frac{1}{27}\right] \\
& =\left[\frac{27+4}{108}\right]=\frac{\mathbf{3 1}}{\mathbf{1 0 8}}
\end{aligned}
$$

Unit-II : Algebra

7. Algebraic Expressions

EXERCISE 7.1

6. (i) Add $9 a,-5 a, 6 a,-4 a$ and $7 a$

$$
\begin{aligned}
& =9 a-5 a+6 a-4 a+7 a \\
& =9 a+6 a+7 a-5 a-4 a \\
& =a(9+6+7)-a(5+4) \\
& =22 a-9 a=\mathbf{1 3 a}
\end{aligned}
$$

(ii) Do yourself.
(iii) $2-3 x^{2}, 2 x-x^{3}, 1-3 x+x^{2}$

$$
\begin{aligned}
& =2-3 x^{2}+2 x-x^{3}+1-3 x+x^{2} \\
& =(2+1)-x^{2}(3-1)+x(2-3)-x^{3} \\
& =3-2 x^{2}-x-x^{3} \\
& =-\boldsymbol{x}^{3}-\mathbf{x}^{2}-\boldsymbol{x}+\mathbf{3}
\end{aligned}
$$

(iv) $\frac{2}{3} x^{2}-\frac{1}{3} x+5, \frac{4}{3} x^{2}+\frac{2}{3} x-3, \frac{5}{3} x^{2}-\frac{4}{3} x+1$

$$
=\frac{2}{3} x^{2}-\frac{1}{3} x+5+\frac{4}{3} x^{2}+\frac{2}{3} x-3+\frac{5}{3} x^{2}-\frac{4}{3} x+1
$$

$$
=\frac{2}{3} x^{2}+\frac{4}{3} x^{2}+\frac{5}{3} x^{2}-\frac{1}{3} x+\frac{2}{3} x-\frac{4}{3} x+5-3+1
$$

$$
=x^{2}\left(\frac{2}{3}+\frac{4}{3}+\frac{5}{3}\right)+x\left(\frac{2}{3}-\frac{1}{3}-\frac{4}{3}\right)+(5-3+1)
$$

$$
=\frac{11 x^{2}}{3}-x+3
$$

(v) $x^{2}+y^{2}+z^{2}, x^{2}-3 y^{2}-2 z^{2},-5 x^{2}+4 y^{2}+2 z^{2}$

$$
\begin{aligned}
& =x^{2}+y^{2}+z^{2}+x^{2}-3 y^{2}-2 z^{2}-5 x^{2}+4 y^{2}+2 z^{2} \\
& =x^{2}+x^{2}-5 x^{2}+y^{2}-3 y^{2}+4 y^{2}+z^{2}-2 z^{2}+2 z^{2} \\
& =x^{2}(1+1-5)+y^{2}(1-3+4)+z^{2}(1-2+2) \\
& =-\mathbf{3 x}^{2}+\mathbf{2} \boldsymbol{y}^{2}+\boldsymbol{z}^{2}
\end{aligned}
$$

7. (i) $-5 x y$ from $15 x y$

$$
=15 x y-(-5 x y)
$$

$$
\begin{aligned}
& =15 x y+5 x y \\
& =x y(15+5) \\
& =\mathbf{2 0 x y}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $\frac{3}{5} b c-\frac{4}{5} c a-\left(\frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} c a\right)$

$$
\begin{aligned}
& =\frac{3}{5} b c-\frac{4}{5} c a-\frac{a b}{7}+\frac{35}{3} b c-\frac{6}{5} c a \\
& =\frac{-a b}{7}+\frac{3}{5} b c+\frac{35}{3} b c-\frac{4}{5} c a-\frac{6}{5} c a \\
& =\frac{-a b}{7}+b c\left(\frac{3}{5}+\frac{35}{3}\right)-c a\left(\frac{10}{5}\right) \\
& =-\frac{\boldsymbol{a b}}{7}+\frac{\mathbf{1 8 4}}{\mathbf{1 5}} \mathbf{b} \boldsymbol{c}-\mathbf{2} \boldsymbol{c} \boldsymbol{a}
\end{aligned}
$$

(v) $\left(7-x+x^{2}\right)-\left(x-x^{2}+5\right)$

$$
\begin{aligned}
& =7-x+x^{2}-x+x^{2}-5 \\
& =2 x^{2}-2 x+2 \\
& =\mathbf{2}\left(\boldsymbol{x}^{2}-\boldsymbol{x}+\mathbf{1}\right)
\end{aligned}
$$

8. (i) $x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right)$

$$
\begin{aligned}
& =x^{2}-3 x+5-\frac{3}{2} x^{2}+\frac{5}{2} x-\frac{7}{2} \\
& =x^{2}-\frac{3}{2} x^{2}-3 x+\frac{5}{2} x+5-\frac{7}{2} \\
& =x^{2}\left(1-\frac{3}{2}\right)+x\left(\frac{5}{2}-3\right)+\left(5-\frac{7}{2}\right) \\
& =-\frac{x^{2}}{2}-\frac{x}{2}+\frac{3}{2} \\
& =\frac{-\mathbf{1}}{\mathbf{2}}\left(\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}-\mathbf{3}\right)
\end{aligned}
$$

(ii) Do yourself.

$$
\text { (iii) } \begin{aligned}
\left(\frac{1}{4} y^{2}\right. & \left.-\frac{3}{5} y+7\right)-\left(\frac{y}{9}-5+5 y^{2}\right)-\left(\frac{3}{7} y-\frac{2}{3} y^{2}+2\right) \\
& =\frac{1}{4} y^{2}-\frac{3}{5} y+7-\frac{y}{9}+5-5 y^{2}-\frac{3}{7} y+\frac{2}{3} y^{2}-2 \\
& =y^{2}\left(\frac{1}{4}-5+\frac{2}{3}\right)+y\left(\frac{-3}{5}-\frac{1}{9}-\frac{3}{7}\right)+(7+5-2) \\
& =y^{2}\left(-\frac{49}{12}\right)+y\left(-\frac{359}{315}\right)+10
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\mathbf{4 9}}{\mathbf{1 2}} \mathbf{y}^{\mathbf{2}}-\frac{\mathbf{3 5 9}}{\mathbf{3 1 5}} \mathbf{y}+\mathbf{1 0} \\
& \text { (iv) }-\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} a^{2} b^{2} c+\frac{1}{6} c b^{2} a \\
& =-\frac{1}{2} a^{2} b^{2} c-\frac{1}{5} a^{2} b^{2} c+\frac{1}{3} a b^{2} c+\frac{1}{6} a b^{2} c-\frac{1}{4} a c b^{2} \\
& =-a^{2} b^{2} c\left(\frac{1}{2}+\frac{1}{5}\right)+a b^{2} c\left(\frac{1}{3}+\frac{1}{6}\right)-a b c^{2}\left(\frac{1}{4}+\frac{1}{7}\right)+\frac{1}{8} a^{2} b c \\
& =\frac{-7}{10} a^{2} b^{2} c+\frac{1}{2} a b^{2} c-\frac{11}{28} a b c^{2}+\frac{1}{8} a^{2} b c \\
& =-\frac{\mathbf{7}}{\mathbf{1 0}} \boldsymbol{a}^{\mathbf{2}} \boldsymbol{b}^{\mathbf{2}} \boldsymbol{c}+\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{a} \boldsymbol{b}^{2} \boldsymbol{c}+\boldsymbol{a b c}\left(\frac{\boldsymbol{a}}{\mathbf{8}}-\frac{\mathbf{1 1}}{\mathbf{2 8}} \mathbf{c}\right)
\end{aligned}
$$

9. $\left(3 x^{2}-6 x-7\right)+A=4 x^{2}+x-2$

$$
\begin{aligned}
& A=4 x^{2}+x-2-\left(3 x^{2}-6 x-7\right) \\
& A=4 x^{2}+x-2-3 x^{2}+6 x+7 \\
& A=4 x^{2}-3 x^{2}+x+6 x-2+7 \\
& A=x^{2}(4-3)+x(1+6)+5 \\
& A=\boldsymbol{x}^{2}+7 \boldsymbol{x}+\mathbf{5}
\end{aligned}
$$

10. $0-A=x^{2}-x+3$

$$
A=-\left(x^{2}-x+3\right)
$$

EXERCISE 7.2

1. (i) $7 x \times 5 x^{2}=\mathbf{3 5} \boldsymbol{x}^{\mathbf{3}}$
(ii) $-5 x^{3} \times 7 x^{2}=-\mathbf{3 5} \boldsymbol{x}^{\mathbf{5}}$
(iii) $20 x \times\left(-25 x^{2} y\right)=-\mathbf{5 0 0} \boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}$
(iv) $2 a^{2} b c \times 4 a b^{2}=\mathbf{8 a}^{\mathbf{3}} \boldsymbol{b}^{\mathbf{3}} \boldsymbol{c}$
(v) $\frac{5}{7} \times x^{3} \times \frac{-28}{45} x^{4}=\frac{-\mathbf{4}}{\mathbf{9}} \times \boldsymbol{x}^{7}$
(vi) $\frac{-8}{5} a^{3} b \times \frac{15}{16} a b c^{2}=\frac{-3}{2} \boldsymbol{a}^{4} \boldsymbol{b}^{2} \boldsymbol{c}^{2}$
(vii) Do yourself.
(viii) $\left(-\frac{1}{27} a^{2} b^{2}\right) \times\left(-\frac{9}{2} a^{3} b^{2} c^{2}\right)=\frac{\mathbf{1}}{\mathbf{6}} \boldsymbol{a}^{\mathbf{5}} \boldsymbol{b}^{4} \boldsymbol{c}^{\mathbf{2}}$
(ix) $3.2 x^{6} y^{3} \times 5 x^{2} y^{2}=\frac{32}{10} x^{6} y^{3} \times \frac{5}{10} x^{2} y^{2}$

$$
\begin{aligned}
& =\frac{160}{100} x^{8} y^{5}=\frac{8}{5} x^{8} y^{5} \\
& =\mathbf{1 . 6} \boldsymbol{x}^{\mathbf{8}} \boldsymbol{y}^{\mathbf{5}}
\end{aligned}
$$

(x) $x^{-6} \times x^{7} \times(-2 x)=-2 x^{-6+7+1}=-\mathbf{2} \boldsymbol{x}^{2}$
(xi) $\left(-2 x^{2}\right) \times\left(7 x^{2}\right) \times\left(6 x^{3}\right)=-\mathbf{8 4} \boldsymbol{x}^{7}$

Put $x=1$ in both sides
$\left(-2 \times 1^{2}\right)\left(7 \times 1^{2}\right)\left(6 \times 1^{3}\right)=-84 \times 1$
$-84=-84 \quad$ Hence proved.
(xii) $2 a b \times\left(-5 a^{2}\right) \times\left(-4.4 a^{2} b\right)$

$$
=44 a^{2+1+2} b^{1+1}=44 \boldsymbol{a}^{\mathbf{5}} \boldsymbol{b}^{\mathbf{2}}
$$

When $a=-1, b=2$

$$
=44 \times(-1)^{5} \times(2)^{2}=-44 \times 4=-176
$$

(xiii) $a=1, b=2$

$$
\begin{aligned}
& =\left(5 a^{6}\right)\left(-10 a b^{2}\right)\left(-2 a^{2} b^{3}\right) \\
& =100 a^{6+2+1} b^{2+3}=100 a^{9} b^{5} \\
& =100 \times(1)^{9} \times(2)^{5} \\
& =100 \times 1 \times 32=\mathbf{3 2 0 0}
\end{aligned}
$$

2. (i) $a^{7} \times a^{10} \times a^{-3}=a^{7+10-3}=a^{7+7}=\boldsymbol{a}^{\mathbf{1 4}}$
(ii) $x^{-5} \times\left(-2 x^{3}\right) \times 7 x^{5}=-14 x^{-5+3+5}=-\mathbf{1 4} \boldsymbol{x}^{\mathbf{3}}$

EXERCISE 7.3

1. (i) $5 a\left(a^{2}+a+3\right)=5 a \times a^{2}+5 a \times a+5 a \times 3$

$$
=5 a^{3}+5 a^{2}+15 a
$$

(ii) Do yourself.
(iii) $0.1 a(0.01 a+0.0016)=\frac{1}{10} a\left(\frac{a}{100}+\frac{16}{10000}\right)$

$$
=\frac{a^{2}}{1000}+\frac{16 a}{100000}
$$

2. (i) $(3 x+5) \times 7 x=3 x \times 7 x+5 \times 7 x$

$$
=21 x^{2}+35 x
$$

(ii), (iii) Do yourself.
(iv) $\left(5 x^{2}+7 x\right) \times 5 x^{2}=\mathbf{2 5} \boldsymbol{x}^{\mathbf{4}}+\mathbf{3 5} \boldsymbol{x}^{\mathbf{3}}$
(v) $\left(\frac{1}{2} x-\frac{1}{3} y\right) \times 6 x y=\frac{1}{2} \times 6 x^{2} y-\frac{6}{3} x y^{2}$

$$
=3 x^{2} y-2 x y^{2}
$$

(vi) $(0.2 a-0.1 b) \times 0.3 a b=0.2 a \times 0.3 a b-0.1 b \times 0.3 a b$

$$
=0.06 a^{2} b-0.03 a b^{2}
$$

3. (i) $(2 x+9) \times(6 x+5)=2 x \times 6 x+6 x \times 9+5 \times 2 x+45$

$$
\begin{aligned}
& =12 x^{2}+54 x+10 x+45 \\
& =\mathbf{1 2} \boldsymbol{x}^{\mathbf{2}}+\mathbf{6 4 x} \boldsymbol{x}+\mathbf{4 5}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(2.5 a+2.3 b) \times(2.5 a-2.3 b)=(2.5 a)^{2}-(2.3 b)^{2}$

$$
=6.25 a^{2}-5.29 b^{2}
$$

4. (i) $a(a-b)+b(a-b)=a^{2}-a b+a b-b^{2}=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$
(ii) Do yourself.
(iii) $a\left(a^{2}+1\right)+b\left(b^{2}+1\right)-(a+b)=a^{3}+a+b^{3}+b-a-b$

$$
=a^{3}+b^{3}
$$

(iv) Do yourself.
5. (i) $(2 x-5) \times(7+4 x)=2 x \times 7-35+2 x \times 4 x-5 \times 4 x$

$$
\begin{aligned}
& =14 x-35+8 x^{2}-20 x \\
& =\mathbf{8} \boldsymbol{x}^{2}-\mathbf{6} \boldsymbol{x}-\mathbf{3 5} \\
(x=2) & =8(2)^{2}-6(2)-35 \\
& =8 \times 4-12-35=32-12-35=-\mathbf{1 5}
\end{aligned}
$$

If
(ii), (iii) Do yourself.
(iv) $\left(p^{2}-q^{2}\right)(p-q)=p^{3}-p q^{2}-p^{2} q+q^{3}$

If $p=2, q=0=(2)^{3}-(2) \times 0-(2)^{2} \times 0+0=8$
6. (i) $(2 x+3 y)\left(4 x^{2} y+5 x y^{2}\right)$

$$
\begin{aligned}
& =8 x^{3} y+12 x^{2} y^{2}+10 x^{2} y^{2}+15 x y^{3} \\
& =\mathbf{8 x}^{\mathbf{3}} \boldsymbol{y}+\mathbf{2 2} \boldsymbol{x}^{\mathbf{2}} \boldsymbol{y}^{\mathbf{2}}+\mathbf{1 5} \boldsymbol{x} \boldsymbol{y}^{\mathbf{3}}
\end{aligned}
$$

(ii) $\left(a^{5}+5\right)\left(b^{3}+3\right)+4=a^{5} b^{3}+5 b^{3}+3 a^{5}+15+4$

$$
=a^{5} b^{3}+5 b^{3}+3 a^{5}+19
$$

(iii) $(a+b c d)\left(a^{3}+b^{3} c^{3} d^{3}\right)$

$$
=a^{4}+a b^{3} c^{3} d^{3}+a^{3} b c d+b^{4} c^{4} d^{4}
$$

(iv) $\left(t^{2}+s^{3}\right)\left(t^{2}-s^{3}\right)$ is of the form $(a+b)(a-b)=a^{2}-b^{2}$

$$
=\left(t^{2}\right)^{2}-\left(s^{3}\right)^{2}=\boldsymbol{t}^{\mathbf{4}}-\boldsymbol{s}^{\mathbf{6}}
$$

7. (i) $-x^{2} y z\left(x y^{2} z-x^{2} z\right)=-x^{3} y^{3} z^{2}+x^{4} y z^{2}$

If $x=-1, y=1, z=2$

$$
\begin{aligned}
& =-(-1)^{3}(1)^{3}(2)^{2}+(-1)^{4}(1)(2)^{2} \\
& =1 \cdot 1 \cdot 4+1 \cdot 1 \cdot 4 \\
& =4+4=8
\end{aligned}
$$

(ii) Do yourself.
8. (i) $(1.5 x-4 y)(1.5 x+4 y+3)$

$$
\begin{aligned}
& =1.5 x \times(1.5 x+4 y+3)-4 y(1.5 x+4 y+3) \\
& =2.25 x^{2}+6 x y+4.5 x-6 x y-16 y^{2}-12 y \\
& =\mathbf{2 . 2 5} \boldsymbol{x}^{\mathbf{2}}-\mathbf{1 6} \boldsymbol{y}^{\mathbf{2}}+\mathbf{4 . 5 x}-\mathbf{1 2 y}
\end{aligned}
$$

(ii) Do yourself.
9. (i) $(3 x+4)(2 x-3)+(5 x-4)(x+2)$

$$
\begin{aligned}
& =3 x(2 x-3)+4=(2 x-3)+5 x(x+2)-4(x+2) \\
& =6 x^{2}-9 x+8 x-12+5 x^{2}+10 x-4 x-8 \\
& =\mathbf{1 1} \boldsymbol{x}^{2}+\mathbf{5} \boldsymbol{x}-\mathbf{2 0}
\end{aligned}
$$

(ii) Do yourself.
(iii) $\left(x^{2}-5 x+6\right)(2 x-3)-\left(3 x^{2}+4 x-5\right)(x-2)$

$$
\begin{gathered}
=2 x\left(x^{2}-5 x+6\right)-3\left(x^{2}-5 x+6\right)-x\left(3 x^{2}+4 x-5\right) \\
+2\left(3 x^{2}+4 x-5\right) \\
=2 x^{3}-10 x^{2}+12 x-3 x^{2}+15 x-18-3 x^{3}-4 x^{2} \\
+5 x+6 x^{2}+8 x-10 \\
=\left(2 x^{3}-3 x^{3}\right)+\left(-10 x^{2}-3 x^{2}-4 x^{2}+6 x^{2}\right) \\
+(12 x+15 x+5 x+8 x)-18-10 \\
=-\boldsymbol{x}^{\mathbf{3}}-\mathbf{1 1} \boldsymbol{x}^{2}+\mathbf{4 0 x}-\mathbf{2 8} \quad
\end{gathered}
$$

10. (i) $(x+2 y) \times(2 x-9 y+7)$

$$
\begin{aligned}
& =2 x^{2}-9 x y+7 x+4 x y-18 y^{2}+14 y \\
& =\mathbf{2} \boldsymbol{x}^{\mathbf{2}}-\mathbf{1 8} \boldsymbol{y}^{\mathbf{2}}-\mathbf{5} \boldsymbol{x} \boldsymbol{y}+\mathbf{7} \boldsymbol{x}+\mathbf{1 4 y}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(a+b+c) \times\left(a^{3}-b^{3}\right)$

$$
=a^{4}-a b^{3}+a^{3} b-b^{4}+a^{3} c-c b^{3}
$$

11. (i) $(x+y)\left(x^{2}-x y+y^{2}\right)=x\left(x^{2}-x y+y^{2}\right)+y\left(x^{2}-x y+y^{2}\right)$

$$
\begin{aligned}
& =x^{3}-x^{2} y+x y^{2}+x^{2} y-x y^{2}+y^{3} \\
& =\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{y}^{\mathbf{3}}
\end{aligned}
$$

(ii) $x^{2}+(3 x-y)\left(3 x+y+y^{2}\right)$

$$
\begin{aligned}
& =x^{2}+9 x^{2}+3 x y+3 x y^{2}-3 x y-y^{2}-y^{3} \\
& =\mathbf{1 0} \boldsymbol{x}^{\mathbf{2}}-\mathbf{y}^{\mathbf{2}}-\boldsymbol{y}^{\mathbf{3}}+\mathbf{3 x}^{\mathbf{x}} \mathbf{2}^{\mathbf{2}}
\end{aligned}
$$

(iii) $x\left(x+y^{2}+z\right)+y^{2}(x+y+z)-z\left(z+y^{2}\right)$

$$
\begin{aligned}
& =x^{2}+x y^{2}+z x+x y^{2}+y^{3}+y^{2} z-z x-z y^{2} \\
& =\boldsymbol{x}^{\mathbf{2}}+\mathbf{2 x y}^{2}+\boldsymbol{y}^{\mathbf{3}}
\end{aligned}
$$

EXERCISE 7.4

1. (i) $(a-5) \times(a-5)=(a-5)^{2}=a^{2}+25-10 a$
(ii) Do yourself.
(iii) $\left(\frac{5}{2} x-7\right) \times\left(\frac{5}{2} x-7\right)=\left(\frac{5}{2} x-7\right)^{2}=\frac{\mathbf{2 5}}{\mathbf{4}} \boldsymbol{x}^{\mathbf{2}}+\mathbf{4 9}-\mathbf{3 5 x}$
2. (i) $(x+3)(x+3)=(x+3)^{2}=\boldsymbol{x}^{2}+9+6 \boldsymbol{x}$
(ii) $(2 y+5)(2 y+5)=(2 y+5)^{2}=\mathbf{4} \boldsymbol{y}^{2}+\mathbf{2 5}+\mathbf{2 0} y$
(iii) Do yourself.
(iv) $(1.1 m+2.1)(1.1 m+2.1)$

$$
\begin{aligned}
& =(1.1 m+2.1)^{2}=(1.1 m)^{2}+(2.1)^{2}+2 \times(1.1 m) \times(2.1) \\
& =\mathbf{1 . 2 1 m} \boldsymbol{m}^{2}+\mathbf{4 . 4 1}+\mathbf{4 . 6 2 m}
\end{aligned}
$$

(v), (vi), Do yourself.
3. (i) $(6 x+7)(6 x-7)=(6 x)^{2}-(7)^{2}=\mathbf{3 6} \boldsymbol{x}^{\mathbf{2}}-\mathbf{4 9}$
(ii), (iii) Do yourself.
4. (i) $(6 x-8 y)(6 x+8 y)=(6 x)^{2}-(8 y)^{2}=\mathbf{3 6} \boldsymbol{x}^{\mathbf{2}}-\mathbf{6 4} \boldsymbol{y}^{\mathbf{2}}$

Another method : By multiplication

$$
\begin{aligned}
& (6 x-8 y)(6 x+8 y) \\
& =6 x(6 x-8 y)+8 y(6 x-8 y) \\
& =36 x^{2}-48 x y+48 x y-64 y^{2} \\
& =\mathbf{3 6} \boldsymbol{x}^{\mathbf{2}}-\mathbf{6 4} \boldsymbol{y}^{\mathbf{2}}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $\left(1.7 p^{3}+1.2 q^{3}\right)\left(1.7 p^{3}-1.2 q^{3}\right)$

$$
\begin{aligned}
& =\left(1.7 p^{3}\right)^{2}-\left(1.2 q^{3}\right)^{2} \\
& =\mathbf{2 . 8 9} \boldsymbol{p}^{6}-\mathbf{1 . 4 4} \boldsymbol{q}^{\mathbf{6}}
\end{aligned}
$$

Another method : By multiplication.

$$
\begin{aligned}
\left(1.7 p^{3}+1.2 q^{3}\right) & \left(1.7 p^{3}-1.2 q^{3}\right) \\
& =2.89 p^{6}+2.04 p^{3} q^{3}-2.04 p^{3} q^{3}-1.44 q^{6} \\
& =\mathbf{2 . 8 9} \boldsymbol{p}^{\mathbf{6}}-\mathbf{1 . 4 4} \boldsymbol{q}^{\mathbf{6}}
\end{aligned}
$$

5. (i) $(a-5)^{2}=a^{2}+(5)^{2}-2 \times 5 \times a$

$$
=a^{2}+25-10 a
$$

Another Method : By expanding.

$$
\begin{aligned}
(a-5)(a-5) & =a(a-5)-5(a-5) \\
& =a^{2}-5 a-5 a+25 \\
& =\boldsymbol{a}^{\mathbf{2}}+\mathbf{2 5}-\mathbf{1 0} \boldsymbol{a}
\end{aligned}
$$

(ii), (iii) Do yourself.
6. (i) $\left(a^{2}-b^{2}\right)^{2}=\left(a^{2}\right)^{2}+\left(b^{2}\right)^{2}-2 a^{2} b^{2}$

$$
=a^{4}+b^{4}-2 a^{2} b^{2}
$$

(ii), (iii), (iv) Do yourself.
7. (i), (ii), (iii) Do yourself.
(iv) $\left(2 r^{2}-\frac{1}{400} t^{2}\right)^{2}-\left(2 r^{2}+\frac{1}{400} t^{2}\right)^{2}$

$$
=\left\{\left(2 r^{2}\right)^{2}+\left(\frac{1}{400} t^{2}\right)^{2}+2.2 r^{2} \cdot \frac{1}{400} t^{2}\right\}
$$

$$
\begin{aligned}
& \quad\left\{\left(2 r^{2}\right)^{2}+\left(\frac{1}{400} t^{2}\right)^{2}-2.2 r^{2} \cdot \frac{1}{400} t^{2}\right\} \\
& =4 r^{4}+\frac{1}{160000} t^{4}-\frac{r^{2} t^{2}}{100}-4 r^{4}-\frac{1}{160000} t^{4}-\frac{r^{2} t^{2}}{100} \\
& =-\frac{\mathbf{1}}{\mathbf{5 0}} \boldsymbol{r}^{\mathbf{2}} \boldsymbol{t}^{\mathbf{2}}
\end{aligned}
$$

8. (i) $71^{2}=(70+1)^{2}$

$$
\begin{aligned}
& =(70)^{2}+(1)^{2}+2 \times 70 \times 1 \\
& =4900+1+140=\mathbf{5 0 4 1}
\end{aligned}
$$

(ii), (iii) Do yourself.
9. (i) $(a b+b c)^{2}-2 a b^{2} c=a^{2} b^{2}+b^{2} c^{2}+2 a b^{2} c-2 a b^{2} c$

$$
=a^{2} b^{2}+b^{2} c^{2}
$$

(ii) Do yourself.
10. (i) $(3 x+7)^{2}-84 x=(3 x)^{2}+(7)^{2}+2 \times 3 x \times 7-84 x$

$$
\begin{aligned}
& =9 x^{2}+49+42 x-84 x \\
& =9 x^{2}+49-42 x \\
& =(3 x)^{2}+(7)^{2}-2 \times 3 x \times 7 \\
& =(\mathbf{3 x}-\mathbf{7})^{\mathbf{2}}
\end{aligned}
$$

(ii) $(89 p-5 q)^{2}+1780 p q$

$$
\begin{aligned}
& =7921 p^{2}+25 q^{2}-890 p q+1780 p q \\
& =(\mathbf{8 9} \boldsymbol{p}+\mathbf{5 q})^{\mathbf{2}}
\end{aligned}
$$

11. (i) $(x-1)(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)=\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)$

$$
\begin{aligned}
& =\left(x^{4}-1\right)\left(x^{4}+1\right) \\
& =\left(x^{4}\right)^{2}-(1)^{2} \\
& =\boldsymbol{x}^{\mathbf{8}}-\mathbf{1}
\end{aligned}
$$

(ii) Do yourself.
12. (i) $5 x=(45)^{2}-(30)^{2}$

$$
\begin{aligned}
5 x & =(45+30)(45-30) \\
5 x & =75 \times 15 \\
x & =\frac{75 \times 15}{5} \\
x & =75 \times 3=\mathbf{2 2 5}
\end{aligned}
$$

(ii) Do yourself.
13. (i) $105 \times 95=(100+5)(100-5)$

$$
\begin{aligned}
& =(100)^{2}-(5)^{2} \\
& =10000-25 \\
& =\mathbf{9 9 7 5}
\end{aligned}
$$

(ii) Do yourself.
(iii) $297 \times 303=(300-3) \times(300+3)$

$$
\begin{aligned}
& =(300)^{2}-(3)^{2} \\
& =90000-9 \\
& =\mathbf{8 9 9 9 1}
\end{aligned}
$$

14. (i) $51^{2}-49^{2}=(51)^{2}-(49)^{2}$

$$
\begin{aligned}
& =(51+49)(51-49) \\
& =100 \times 2 \\
& =\mathbf{2 0 0}
\end{aligned}
$$

(ii) Do yourself.
(iii) $233^{2}-227^{2}=(233)^{2}-(227)^{2}$

$$
\begin{aligned}
& =(233+227)(233-227) \\
& =460 \times 6 \\
& =\mathbf{2 7 6 0}
\end{aligned}
$$

15. (i) $8 a=35^{2}-27^{2}$

$$
\begin{aligned}
8 a & =(35)^{2}-(27)^{2} \\
8 a & =(35+27)(35-27) \\
8 a & =62 \times 8 \\
a & =\frac{62 \times 8}{8}=\mathbf{6 2}
\end{aligned}
$$

(ii) Do yourself.

8.
 Linear Equations In One Variable

EXERCISE 8.1

1. $5 x-3=3 x-5$

$$
\begin{aligned}
5 x-3 x & =-5+3 \\
2 x & =-2 \\
x & =\frac{-2}{2}=-\mathbf{1}
\end{aligned}
$$

2. $\frac{x}{5}+1=\frac{1}{15}$

$$
\begin{aligned}
& \frac{x}{5}=\frac{1}{15}-1 \\
& \frac{x}{5}=\frac{1-15}{15} \\
& \frac{x}{5}=\frac{-14}{15}
\end{aligned}
$$

$$
x=\frac{-14}{3}
$$

3. Do yourself.
4. $\frac{x-8}{3}=\frac{x-3}{5}$

$$
\begin{aligned}
5(x-8) & =3(x-3) \\
5 x-40 & =3 x-9 \\
5 x-3 x & =-9+40 \\
2 x & =31 \\
x & =\frac{\mathbf{3 1}}{\mathbf{2}}
\end{aligned}
$$

5. Do yourself.
6. $x+7-\frac{16 x}{3}=12-\frac{7 x}{2}$

$$
\begin{aligned}
x-\frac{16 x}{3}+\frac{7 x}{2} & =12-7 \\
x\left(1-\frac{16}{3}+\frac{7}{2}\right) & =5 \\
x\left[\frac{6-32+21}{6}\right] & =5 \\
x\left(\frac{27-32}{6}\right) & =5 \\
x(-5) & =30 \\
x & =-6
\end{aligned}
$$

7. Do yourself.
8. $\frac{3 t-2}{3}+\frac{2 t+3}{3}=t+\frac{7}{6}$

$$
\begin{aligned}
\frac{3 t}{3}-\frac{2}{3}+\frac{2 t}{3}+\frac{3}{3} & =t+\frac{7}{6} \\
t-\frac{2}{3}+\frac{2 t}{3}+1 & =t+\frac{7}{6} \\
t+\frac{2 t}{3}-t & =\frac{7}{6}+\frac{2}{3}-1 \\
t\left(1+\frac{2}{3}-1\right) & =\frac{7+4-6}{6} \\
\frac{2}{3} t & =\frac{11-6}{6} \\
\frac{2}{3} t & =\frac{5}{6} \\
t & =\frac{5}{6} \times \frac{3}{2}
\end{aligned}
$$

$$
\Rightarrow \quad t=\frac{\mathbf{5}}{\mathbf{4}}
$$

9. $3(x-3)=5(2 x+1) \Rightarrow 3 x-9=10 x+5$

$$
7 x+14=0
$$

$$
\Rightarrow \quad x=-2
$$

10. $15(y-4)-2(y-9)+5(y+6)=0$

$$
\begin{array}{rlrl}
15 y-60-2 y+18+5 y+30 & =0 \\
15 y-2 y+5 y & =60-30-18 \\
y(15-2+5) & =60-48 \\
18 y & =12 \\
\Rightarrow \quad y & =\frac{12}{18} \\
\Rightarrow \quad y & & =\frac{\mathbf{2}}{\mathbf{3}}
\end{array}
$$

11. Do yourself.
12. $4(3 w+2)-5(6 w-1)=2(w-8)-6(7 w-4)+4 w$

$$
\begin{array}{r}
12 w+8-30 w+5=2 w-16-42 w+24+4 w \\
(12 w-30 w-2 w+42 w-4 w)=-8-5-16+24 \\
w(12+42-30-2-4)=-5 \\
18 w=-5 \Rightarrow w=\frac{-\mathbf{5}}{\mathbf{1 8}}
\end{array}
$$

13. $0.25(4 y-3)=0.5 y-9$

$$
\begin{aligned}
\frac{25}{100}(4 y-3) & =\frac{5}{10} y-9 \\
\frac{25 \times 4 y}{100}-\frac{25 \times 3}{100} & =\frac{5 y}{10}-9 \\
y-\frac{y}{2} & =-9+\frac{3}{4} \\
\frac{y}{2} & =\frac{-36+3}{4} \\
\frac{y}{2} & =\frac{-33}{4} \\
y & =\frac{-\mathbf{3 3}}{\mathbf{2}}
\end{aligned}
$$

14. $0.16(5 x-2)=0.4 x+7$

$$
\begin{aligned}
0.16 \times 5 x-0.16 \times 2 & =0.4 x+7 \\
\frac{16 \times 5 x}{100}-\frac{16 \times 2}{100} & =\frac{4 x}{10}+7 \\
\frac{80 x}{100}-\frac{4 x}{10} & =7+\frac{32}{100}
\end{aligned}
$$

$$
\begin{array}{rlrl}
& & x\left(\frac{8}{10}-\frac{4}{10}\right) & =\frac{732}{100} \Rightarrow \frac{4 x}{10}=\frac{732}{100} \\
\Rightarrow & & 4 x & =\frac{732}{10} \Rightarrow \quad x=\frac{183}{10} \\
\Rightarrow & x & =\mathbf{1 8 . 3}
\end{array}
$$

15. $2.25(2 z+8)=5 z-3$

$$
\begin{aligned}
4.50 z+18.00 & =5 z-3 \\
18+3 & =(5-4.5) z \\
21 & =0.5 z \\
\frac{21}{0.5} & =z \\
z & =\mathbf{4 2}
\end{aligned}
$$

16. Do yourself.
17. $\frac{x}{2}-\frac{1}{4}=\frac{x}{3}+\frac{1}{2}$

$$
\begin{aligned}
\frac{x}{2}-\frac{x}{3} & =\frac{1}{2}+\frac{1}{4} \\
\frac{3 x-2 x}{6} & =\frac{2+1}{4} \\
\frac{x}{6} & =\frac{3}{4} \\
x & =\frac{3 \times 6}{4}=\frac{9}{2}
\end{aligned}
$$

18. $2 x-3(x+1)=5 x-7$

$$
\begin{aligned}
2 x-3 x-3 & =5 x-7 \\
5 x-2 x+3 x & =-3+7 \\
6 x & =4 \\
x & =\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

19. $\frac{4 z-3}{4}-3=\frac{5 z-7}{3}-4 z-1$

$$
\begin{aligned}
\frac{4 z}{4}-\frac{3}{4}-3 & =\frac{5 z}{3}-\frac{7}{3}-4 z-1 \\
z-\frac{5}{3} z+4 z & =\frac{3}{4}+3-\frac{7}{3}-1 \\
\frac{3 z-5 z+12 z}{3} & =\frac{9+36-28-12}{12} \\
\frac{10 z}{3} & =\frac{5}{12} \\
\Rightarrow \quad \frac{2 z}{1} & =\frac{1}{4}
\end{aligned}
$$

$$
\Rightarrow \quad z=\frac{1}{8}
$$

20. $18 y+3 y-\frac{3}{5}=21+5 y-2 y$

$$
\begin{aligned}
18 y+3 y-5 y+2 y & =21+\frac{3}{5} \\
18 y & =\frac{108}{5} \\
y & =\frac{108}{5 \times 18} \\
\Rightarrow \quad y & =\frac{6}{5}
\end{aligned}
$$

EXERCISE 8.2

1. Let the one number be x and other $95-x$

$$
\begin{aligned}
x+3 & =95-x \\
2 x & =95-3 \\
2 x & =92 \\
x & =\frac{92}{2} \\
x & =46
\end{aligned}
$$

Therefore the numbers are 46 and 49.
2. Let the number be $x, x+1$ and $x+2$

$$
\begin{aligned}
x+x+1+x+2 & =24 \\
3 x+3 & =24 \\
3 x & =24-3 \\
3 x & =21 \\
x & =7
\end{aligned}
$$

Therefore the numbers are $7,7+1,7+2=\mathbf{7}, \mathbf{8}$ and 9 .
3. Let the number be x.

$$
\begin{array}{rlrl}
& & 2 x+7 & =49 \\
\Rightarrow & 2 x & =49-7 \\
\Rightarrow & 2 x & =42 \\
\Rightarrow & x & =\frac{42}{2} \\
\Rightarrow & x & =\mathbf{2 1}
\end{array}
$$

4. Let the number be x

$$
\begin{aligned}
3 x-22 & =68 \\
3 x & =68+22 \\
3 x & =90
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & x=\frac{90}{3} \\
\Rightarrow & x=\mathbf{3 0}
\end{array}
$$

5. Let the number be x

$$
\begin{aligned}
7 x-3 & =53 \\
7 x & =56 \\
x & =\mathbf{8}
\end{aligned}
$$

6. Let x be the no. of 10 rupee note and y that of 50 rupee note.

Given that,

$$
\begin{equation*}
10 x+50 y=250 \tag{i}
\end{equation*}
$$

And

$$
x=y+1
$$

Putting the value of x from equation (ii) in equation (i).
We get,

$$
\begin{aligned}
10(y+1)+50 y & =250 \\
10 y+10+50 y & =250 \\
60 y & =240 \\
y & =\frac{240}{60}=4
\end{aligned}
$$

From equation 2. $x=y+1, x=4+1=5$
No. of 10 rupee note $=\mathbf{5}$, no. of 50 rupee note $=\mathbf{4}$
7. Let the breadth $=x$

And \quad Length $=2 x+2$
Perimeter of rectangle $=2 \times(l+b)$

$$
28=2 \times(x+2 x+2)
$$

$$
14=3 x+2
$$

$\Rightarrow \quad 3 x=12$
$\Rightarrow \quad x=4$
Breadth $=\mathbf{4} \mathbf{~ c m}$, Length $=10 \mathbf{c m}$.
8. Let Subramaniam's age $=x$

Mother's age $=6 x$
After 5 years

$$
\begin{aligned}
x+5+20 & =6 x+5 \\
x+25 & =6 x+5 \\
25-5 & =6 x-x \\
20 & =5 x
\end{aligned}
$$

$$
\Rightarrow \quad x=4
$$

4 years and $6 \times 4=24$ years.
9. Let breadth be x and length be $x+4$

Perimeter of the rectangle $=2 \times$ (length + breadth $)$

$$
\begin{aligned}
& 84=2 \times(x+4+x) \\
& 42=2 x+4 \\
& 42-4=2 x \\
& 38=2 x \Rightarrow x=19 \\
& \Rightarrow \quad \text { Breadth = 19 Length }=\mathbf{2 3} \mathrm{m}
\end{aligned}
$$

10. Let the present age of Sheela be x.

After 15 years

$$
\begin{aligned}
x+15 & =4 x \\
3 x & =15 \\
x & =5
\end{aligned}
$$

\therefore Present age of Sheela is $\mathbf{5}$ years.
11. Let the one prize $=x$; and other prize $=(63-x)$

$$
\begin{aligned}
100 x+(63-x) \times 25 & =3000 \\
100 x+1575-25 x & =3000 \\
75 x & =1425 \\
\Rightarrow \quad x & =\frac{1425}{75}=19
\end{aligned}
$$

$$
19,63-19=44
$$

No. of 100 rupee prizes $=\mathbf{1 9}$, No. of 25 rupee prizes $=44$
12. Do yourself.
13. Let the total worth of Shanti Lal's property be x

$$
\begin{aligned}
\text { Son's share } & =\frac{x}{5} \\
\text { Daughter's share } & =\frac{x}{5} \\
\text { Wife's share } & =\frac{3 x}{5} \\
\text { If wife's share } & =288000 \\
288000 & =\frac{3 x}{5} \\
3 x & =288000 \times 5 \\
x & =\frac{288000 \times 5}{3} \\
& =\mathbf{4 8 0 0 0 0}
\end{aligned}
$$

₹ 480000 is total worth of Shanti Lal.
14. Let one part $=x$ and other part $x+10$

$$
\left.\begin{array}{rl}
\frac{x}{x+10} & =\frac{3}{5} \\
5 x & =3 x+30 \\
5 x-3 x & =30 \\
\Rightarrow \quad 2 x & =30 \\
\Rightarrow & x
\end{array}\right)
$$

First part $=\mathbf{1 5}$ and other $=\mathbf{2 5}$
Total number $=15+25=\mathbf{4 0}$
15. Let the boys $=x$, and girls $=\frac{2 x}{5}$

$$
\begin{array}{rlrl}
& & \frac{2 x}{5}+x & =35 \\
\Rightarrow & \frac{2 x+5 x}{5} & =35 \\
\Rightarrow & \frac{7 x}{5} & =35 \\
\Rightarrow & x & =\frac{35 \times 5}{7} \\
\Rightarrow & x & =\mathbf{2 5}
\end{array}
$$

16. Let the distance covered by Sarita $=x \mathrm{~km}$

The distance covered by Julie $=(18-x) \mathrm{km}$

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
\Rightarrow \quad \frac{5}{2} & =\frac{18-x}{t} \\
\Rightarrow \quad t & =\frac{36-2 x}{5}
\end{aligned}
$$

And

$$
2=\frac{x}{t}
$$

$$
\Rightarrow \quad t=\frac{x}{2}
$$

According to the condition

$$
\begin{aligned}
\frac{36-2 x}{5} & =\frac{x}{2} \\
72-4 x & =5 x \\
72 & =9 x \\
x & =8 \\
t & =\frac{8}{2}=\mathbf{4} \text { hours }
\end{aligned}
$$

17. Let the number be x.

$$
\begin{aligned}
\left(x-\frac{1}{2}\right) \times 4 & =5 \\
x-\frac{1}{2} & =\frac{5}{4} \\
x & =\frac{5}{4}+\frac{1}{2} \\
x & =\frac{5+2}{4}=\frac{7}{4}
\end{aligned}
$$

18. Do yourself.

Let's Recall

3. (b) $3 x-13=8$

$$
\begin{aligned}
3 x & =13+8 \\
3 x & =21 \\
x & =7
\end{aligned}
$$

The value of $x-1=7-1=6$
5. (c) Let a number be x then,

$$
\begin{array}{rlrl}
& & \text { According to question, } \\
\frac{1}{4} \times x+3 & =4 \\
\frac{x}{4} & =4-3 \\
\Rightarrow \quad & & \frac{x}{4} & =1 \\
\Rightarrow \quad & x & =4
\end{array}
$$

6. (c) $4 t+5=-t+15$

$$
\begin{aligned}
4 t+t & =15-5 \\
5 t & =10 \\
t & =\mathbf{2}
\end{aligned}
$$

Unit- III : Commercial Mathematics

9.

Direct and Inverse Variations

EXERCISE 9.1

1. (ii)

x	7	9	13	21	25
y	21	27	39	63	75

(i), (iii) Do yourself.
2.

Time (in minutes)	3	4	7	25	155
Height of the ballon (in metres)	36	48	84	300	1860

3. Sale

1000 100 V
It is a direct variation

$$
\frac{1000}{100}=\frac{73}{x}
$$

$$
x=\frac{73}{10}=₹ 7.30
$$

4. Children

Bottles

It is a direct variation

$$
\begin{array}{ll}
\Rightarrow & \frac{x}{8}=\frac{40}{5} \\
\Rightarrow & x=\frac{40 \times 8}{5} \\
\Rightarrow & x=8 \times 8=\mathbf{6 4} \text { bottles }
\end{array}
$$

5. Cost (₹)

18
36∇
Stamps

It is a direct variation
$\Rightarrow \quad x=\mathbf{3 0}$ stamps
6. Hours

It is a direct variation

$$
\begin{aligned}
\frac{x}{120} & =\frac{20}{5} \\
x & =\frac{120 \times 20}{5}=24 \times 20=480 \\
x & =\mathbf{4 8 0} \text { tools }
\end{aligned}
$$

7. Time

Words

It is a direct variation

$$
\Rightarrow
$$

$$
\begin{aligned}
\frac{x}{540} & =\frac{6}{30} \\
x & =\mathbf{1 0 8} \text { words }
\end{aligned}
$$

8. Steps

125
315

It is a direct variation.

$$
\begin{array}{rlrl}
& & \frac{x}{100} & =\frac{315}{125} \\
\Rightarrow & x & =\frac{315 \times 100}{125} \\
\Rightarrow & x & =\mathbf{2 5 2}
\end{array}
$$

9. Do yourself.
10. Plastic

Cost
93 105

1395 $x \quad \downarrow$

It is a direct variation

$$
\Rightarrow \quad \begin{aligned}
\frac{x}{1395} & =\frac{105}{93} \\
x & =\frac{105 \times 1395}{93} \\
x & =₹ \mathbf{1 5 7 5}
\end{aligned}
$$

EXERCISE 9.2

3. Pumps

Hours
20 45

It is inverse variation

$$
\begin{array}{rlrl}
& & \frac{x}{12} & =\frac{20}{45} \\
\Rightarrow & x & =\frac{20 \times 12}{45}=\frac{4 \times 12}{9} \\
\Rightarrow & x & =\frac{16}{3} \\
\Rightarrow & x & =\mathbf{5} \frac{\mathbf{1}}{\mathbf{3}} \text { hours }
\end{array}
$$

5. Days

Persons

It is a inverse variation

$$
\Rightarrow \quad \begin{aligned}
\frac{x}{1800} & =\frac{40}{24} \\
x & =\frac{1800 \times 40}{24} \\
x & =\mathbf{3 0 0 0} \text { persons }
\end{aligned}
$$

6. Do yourself.
7. Months

It is a inverse variation

$$
\begin{aligned}
& \frac{x}{560} & =\frac{9}{7} \\
\Rightarrow & x & =\mathbf{7 2 0} \text { persons }
\end{aligned}
$$

Required persons $=720-560=\mathbf{1 6 0}$ persons
8. Time Speed

It is a inverse variation
9. Cost
 Bats

It is a inverse variation

$$
\Rightarrow \quad \begin{aligned}
\frac{x}{39} & =\frac{58}{78} \\
78 \times x & =58 \times 39 \\
x & =\frac{58 \times 39}{78}=29 \\
x & =\mathbf{2 9} \text { bats }
\end{aligned}
$$

10. Do yourself.

Let's Recall

1. (d) Cost Price

20,000
24,000 \downarrow
Quantity of Rice (in quintals)

It is a direct variation

$$
\Rightarrow \quad \begin{aligned}
\frac{x}{40} & =\frac{24,000}{20,000} \\
x & =\frac{24,000 \times 40}{20,000} \\
x & =48 \text { (quintals) }
\end{aligned}
$$

2. (c) Bags

Weight
$12 \downarrow$

It is a direct variation

$$
\Rightarrow \begin{aligned}
\frac{x}{90} & =\frac{20}{12} \\
12 x & =20 \times 90 \\
x & =\frac{20 \times 90}{12} \\
x & =\mathbf{1 5 0} \mathbf{~ k g} \text { (Weight) of sugar. }
\end{aligned}
$$

3. (c)
Persons
$40 \uparrow$

60 | Days |
| :---: |
| 30 |
| x |

$$
\begin{aligned}
\text { It is a inverse variation } & \frac{x}{30} & =\frac{40}{60} \\
\Rightarrow & x & =\frac{40 \times 30}{60} \\
& x & =\mathbf{2 0} \text { days }
\end{aligned}
$$

4. (b) Length (in metre)

Persons
$\downarrow 66$
$\downarrow 108$
25
∇x
It is a direct variation

$$
\Rightarrow \quad \begin{aligned}
\frac{x}{25} & =\frac{108}{36} \\
x & =\frac{108 \times 25}{36} \\
x & =\mathbf{7 5} \text { persons }
\end{aligned}
$$

10. Time and Work, Time and Distance

EXERCISE 10

1. Distance $=$ Speed \times Time

$$
\begin{aligned}
=\frac{48(8 \times 60+48)}{60} & =\frac{4 \times 528}{5}=\frac{2112}{5} \\
& =422.4 \mathbf{k m}
\end{aligned}
$$

2. Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
=\frac{18 \times 2}{9}=4 \mathbf{k m} / \mathbf{h r}
$$

3. Time

It is a direct variation

$$
\Rightarrow \begin{aligned}
\frac{x}{50} & =\frac{12}{60} \\
60 \times x & =12 \times 50 \\
x & =\frac{12 \times 50}{60}=\frac{12 \times 5}{6}=10 \\
\text { Distance } & =\mathbf{1 0} \mathbf{~ k m}
\end{aligned}
$$

4. Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
\Rightarrow \quad \begin{aligned}
6 & =\frac{19.5}{t} \\
6 t & =19.5 \\
t & =\frac{195}{6 \times 10} \\
t & =\mathbf{3} \frac{\mathbf{1}}{\mathbf{4}} \text { hours }
\end{aligned}
$$

5. $X \prime$ s 1 hr work $=\frac{1}{10}$
Y 's 1 hr work $=\frac{1}{15}$
X and $Y ' s 1 \mathrm{hr}$ work $=\frac{1}{10}+\frac{1}{15}=\frac{3+2}{30}=\frac{5}{30}=\frac{1}{6}$
So, X and Y together fill the tank in $\mathbf{6}$ hrs.
6.

$$
\text { A's } 1 \text { day's work }=\frac{1}{8}
$$

$$
\text { B's } 1 \text { day's work }=\frac{1}{12}
$$

$$
\text { C's } 1 \text { day's work }=\frac{1}{15}
$$

$\therefore(A+B+C)^{\prime}$'s 1 day's work $=\frac{1}{8}+\frac{1}{12}+\frac{1}{15}$

$$
=\frac{15+10+8}{120}=\frac{33}{120}=\frac{11}{40}
$$

The complete work finished in $\mathbf{3} \frac{\mathbf{7}}{\mathbf{1 1}}$ days.
7. Ram and Arjun's one day's work $=\frac{1}{12}$

$$
\begin{aligned}
\text { Arjun's one day's work } & =\frac{1}{30} \\
\text { Ram's one day's work } & =\frac{1}{12}-\frac{1}{30} \\
& =\frac{5-2}{60}=\frac{3}{60}=\frac{1}{20}
\end{aligned}
$$

Ram alone finish the work in $\mathbf{2 0}$ days.
8. X 's one hour work $=\frac{1}{12}$

$$
\text { Y's one hour work }=\frac{1}{15}
$$

Both X and Y^{\prime} s one hour work $=\frac{1}{12}+\frac{1}{15}=\frac{5+4}{60}=\frac{9}{60}=\frac{3}{20}$
Hence, X and Y together can finish the work in 6 hours 40 minutes.
9., 10., 11. Do yourself.
12. Persons

50
75

$$
\Rightarrow \begin{aligned}
\frac{x}{18} & =\frac{50}{75} \\
\Rightarrow \quad x & =\frac{50 \times 18}{75}=2 \times 6=\mathbf{1 2} \text { days }
\end{aligned}
$$

13. Do yourself.
14. When a train crosses a tree, entire length of the train passes the tree, i.e., a distance of 270 m is covered.

$$
\begin{aligned}
\text { Speed } & =\frac{40.5 \times 5}{18} \mathrm{~m} / \mathrm{s}=\frac{45}{4} \mathrm{~m} / \mathrm{s} \\
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
\frac{45}{4} & =\frac{270}{t} \\
t \quad & =\frac{270 \times 4}{45} \\
t & =\mathbf{2 4} \text { seconds }
\end{aligned}
$$

15., 16. Do yourself.
17. Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
\begin{array}{rlrl}
& & 80 & =\frac{x}{4.5} \\
\Rightarrow & 80 & =\frac{10 \times x}{45} \\
\Rightarrow & x & =\frac{45 \times 80}{10}=45 \times 8 \\
& & x & =360 \mathrm{~km} . \\
\text { Again } & \text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
& & =\frac{360}{3} \\
& & & =\mathbf{1 2 0} \mathbf{~ k m} / \mathbf{h r}
\end{array}
$$

18. Speed $=\frac{55 \times 5}{18}=\frac{275}{18}$

To cross the platform, the train will have to cover $(250+520) \mathrm{m}$

$$
=770 \mathrm{~m}
$$

$$
\begin{aligned}
\text { Time } & =\frac{\text { Distance }}{\text { speed }} \\
& =\frac{770 \times 18}{275}=\mathbf{5 0 . 4} \text { seconds }
\end{aligned}
$$

Let's Recall

2. (d) Given : A can finish the work in 15 days.
B can finish the work in 20 days.

$$
\begin{aligned}
& \text { A's one day's work }=\frac{1}{15} \\
& B^{\prime} \text { 's one day's work }=\frac{1}{20}
\end{aligned}
$$

Both $\left(A\right.$ and B)'s one day's work $=\frac{1}{15}+\frac{1}{20}=\frac{4+3}{60}=\frac{7}{60}$
Both $\left(A\right.$ and B)'s 4 day's work $=\frac{4 \times 7}{60}=\frac{7}{15}$

$$
\text { The remaining work }=1-\frac{7}{15}=\frac{8}{15}
$$

3. (a) Let distance be x

$$
\begin{align*}
& \text { Time }=\frac{\text { Distance }}{\text { Time }} \\
& \text { Time }=\frac{x}{10} \tag{i}
\end{align*}
$$

According to question,

$$
\begin{align*}
\text { Time } & =\frac{x+20}{14} \tag{ii}\\
\frac{x}{10} & =\frac{x+20}{14} \quad \text { From eq. (i) and (ii) } \\
14 x & =10 x+200 \\
14 x-10 x & =200 \\
4 x & =200 \\
x & =\frac{200}{4} \\
x & =50 \mathrm{~km} .
\end{align*}
$$

Actual distance traveled by him is 50 km .
4. (d) Distance covered by an aeroplane $=240 \times 5=1200 \mathrm{~km}$.

Distance $=$ Speed \times Time
$1200=$ Speed $\times 1 \frac{2}{3}$

$$
\begin{aligned}
1200 & =\text { Speed } \times \frac{5}{3} \\
\text { Speed } & =\frac{1200 \times 3}{5} \\
\text { Speed } & =720 \mathrm{~km} / \mathrm{hr} .
\end{aligned}
$$

Percentage, Profit and Loss

EXERCISE 11.1

1. (i) $\frac{b \times \frac{1}{2}}{100}=50 \Rightarrow b=2 \times 50 \times 100=₹ \mathbf{1 0 0 0 0}$
(ii) Do yourself.
(iii) $\frac{3.4 \times b}{100}=68 \Rightarrow b=\frac{68 \times 100}{3.4}=₹ \mathbf{2 0 0 0}$
2. Let the school opened for x days, then

$$
\begin{aligned}
\frac{x \times 90}{100} & =216 \\
90 \times x & =216 \times 100 \\
x & =\frac{216 \times 100}{90}=240 \\
x & =\mathbf{2 4 0} \text { days. }
\end{aligned}
$$

3. Let the monthly income be x, then

$$
\Rightarrow \begin{aligned}
x \times \frac{15}{100} & =600 \\
15 \times x & =600 \times 100 \\
x & =\frac{600 \times 100}{15} \\
x & =\mathbf{4 0 0 0} \\
x & =₹ 4000
\end{aligned}
$$

4. Do yourself.
5. The population of the town in 2010 be x

$$
\Rightarrow \quad \begin{aligned}
\frac{5 \times x}{100} & =8820 \\
x & =\frac{8820 \times 100}{5} \\
x & =\mathbf{1 7 6 4 0 0}
\end{aligned}
$$

6. Let the Kishan's monthly salary be x
spend on food $=30 \%$

$$
\text { donates }=3 \%
$$

then total spent in percentage $=(30+3)=33 \%$

$$
\begin{aligned}
x \times \frac{33}{100} & =2310 \\
x \times 33 & =2310 \times 100 \\
x & =\frac{2310 \times 100}{33} \\
x & =₹ 70 \times 100=₹ \mathbf{7 0 0 0}
\end{aligned}
$$

7. Let the school strength be x

$$
\begin{aligned}
x \times \frac{8}{100} & =160 \\
x & =\mathbf{2 0 0 0}
\end{aligned}
$$

The new strength $=2000+160=\mathbf{2 1 6 0}$
8. Let the total number of matches played by the team during the year be x.

Then

$$
\begin{aligned}
\frac{x \times 60}{100} & =12 \\
x & =\frac{12 \times 100}{60}=\frac{100}{5}=\mathbf{2 0}
\end{aligned}
$$

9. Do yourself.
10. Let the Manjul's income be x

Monika's income $=\frac{x \times 60}{100}=\frac{3 x}{5}$

$$
x+\frac{3 x}{5}=\frac{8 x}{5}
$$

\because If Monika's income is $\frac{8 x}{5}$ then Manjul's income $=\frac{3 x}{5}$
$\therefore \quad$ Monika's income is 1 then Manjul's income $=\frac{3 x \times 5}{5 \times 8 x}$
\therefore Monika's income is 100 then Manjul's income $=\frac{100 \times 3 x \times 5}{5 \times 8 x}$

$$
\begin{aligned}
=\frac{100 \times 3}{8}=\frac{300}{8} & =\frac{75}{2} \\
& =\mathbf{3 7 . 5 \%}
\end{aligned}
$$

11. Do yourself.
12. If total number of students is 100 , number of girls are $=60$

Number of boys $=40$
If number of girls $=60$, then total number of students $=100$
If number of girls $=1$, then total number of students $=\frac{100}{60}$
If number of girls $=690$, then total number of students

$$
=\frac{100}{60} \times 690=1150
$$

Total number of students $=\mathbf{1 1 5 0}$
Number of boys $=40 \%$ of total number of students

$$
\begin{aligned}
& =\frac{40}{100} \times 1150 \\
\text { Number of boys } & =\mathbf{4 6 0}
\end{aligned}
$$

EXERCISE 11.2

2. Cost price includes the over head charges also

Therefore,

$$
\begin{aligned}
\mathrm{CP} & =₹(70000+5000) \\
& =75000 \\
\mathrm{SP} & =67500 \\
\mathrm{SP} & <\mathrm{CP} \\
\text { Loss } & =\mathrm{CP}-\mathrm{SP} \\
& =75000-67500=₹ 7500 \\
\text { Loss } \% & =\frac{\text { Loss } \times 100}{\mathrm{CP}} \\
& =\frac{7500 \times 100}{75000}=\frac{100}{10}=\mathbf{1 0 \%}
\end{aligned}
$$

3. Cost price includes the over head charges also

Therefore,

$$
\mathrm{CP}=₹(15+5)=₹ 20
$$

$$
\mathrm{SP}=₹ 24
$$

$$
\mathrm{SP}>\mathrm{CP}
$$

$$
\text { Profit }=\mathrm{SP}-\mathrm{CP}
$$

$$
=24-20=4
$$

$$
\text { Profit } \% \frac{\text { Profit } \times 100}{C P}=\frac{4 \times 100}{20}=\frac{100}{5}=\mathbf{2 0 \%}
$$

4. Cost price includes the overhead charge also. Therefore

$$
\begin{aligned}
& =₹(150 \times 20+200) \\
& =₹(3000+200)=₹ 3200 \\
\text { SP } & =(150 \times 12 \times 2.40) \\
& =₹ 4320 \\
\text { SP } & >\mathrm{CP} \\
\text { Profit } \% & =₹(4320-3200) \\
& =₹ 1120 \\
\text { Profit } & =\frac{1120 \times 100}{3200}=\mathbf{3 5 \%}
\end{aligned}
$$

5. Let the CP be $₹ x$. Then

$$
\text { SP = ₹ } 990
$$

$$
\begin{array}{rlrl}
\text { Profit } & =\frac{x \times 10}{100}=\frac{x}{10} \\
\mathrm{SP} & =x+\frac{x}{10}=\frac{11 x}{10} \\
\Rightarrow & \frac{11 x}{10} & =990 \\
\Rightarrow & x & =\frac{990 \times 10}{11} \\
\Rightarrow & x & =₹ \mathbf{9 0 0}
\end{array}
$$

6., 7. Do yourself.
8. Let the CP be $₹ x$, Then

$$
\begin{aligned}
\mathrm{SP} & =10240 \\
\text { Loss } & =\frac{x \times 20}{100}=\frac{x}{5} \\
\mathrm{SP} & =x-\frac{x}{5}=\frac{4 x}{5}
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{4 x}{5} & =10240 \\
x & =\frac{10240 \times 5}{4} \\
x & =₹ \mathbf{1 2 8 0 0}
\end{aligned}
$$

or
9. Let the CP be ₹ x, then

$$
\begin{aligned}
\text { SP } & =₹ 240 \\
\text { Loss } & =\frac{x \times 20}{100}=\frac{x}{5} \\
\mathrm{SP} & =x-\frac{x}{5}=\frac{4 x}{5} \\
\frac{4 x}{5} & =240 \\
x & =₹ 300 \\
\mathrm{CP} & =₹ 300 \text { and S.P. }=₹ 360 \\
\text { Profit } & =\mathrm{SP}-\mathrm{CP} \\
& =₹(360-300)=₹ 60 \\
\text { Profit } \% & =\frac{\text { Profit } \times 100}{\mathrm{CP}} \\
& =₹ \frac{60 \times 100}{300}=\mathbf{2 0 \%}
\end{aligned}
$$

10. $\mathrm{SP}=₹ 135$

If new $\mathrm{SP}=₹ 165$

$$
\begin{aligned}
\text { Gain } \% & =? \\
\text { Loss } \% & =\frac{\mathrm{CP}-\mathrm{SP}}{\mathrm{CP}} \times 100
\end{aligned}
$$

$$
\begin{aligned}
\frac{10}{100} & =\left(1-\frac{₹ 135}{\mathrm{C} . \mathrm{P} .}\right) \\
\frac{₹ 135}{\mathrm{CP}} & =1-\frac{1}{10}=\frac{9}{10} \\
\mathrm{CP} & =\frac{₹ 135 \times 10}{9}=15 \times 10=₹ 150 \\
\mathrm{SP} & =₹ 165 \\
\text { Profit } & =\mathrm{SP}-\mathrm{CP}=₹ 165-150=₹ 15 \\
\text { Profit } \% & =\frac{\text { Profit }}{\mathrm{CP}} \times 100 \\
& =\frac{₹ 15}{₹ 150} \times 100=\mathbf{1 0 \%}
\end{aligned}
$$

11. $S P=₹ 198$, gain $=10 \%$

$$
\text { Then, } \begin{aligned}
& \mathrm{CP}=\frac{100}{100+\text { Profit } \%} \times \mathrm{SP} \\
&=₹ \frac{100 \times 198}{110}=₹ 180 \\
& \text { Second calculator } \quad \begin{aligned}
\mathrm{SP} & =₹ 198, \text { Loss }=10 \% \\
\mathrm{CP} & =\frac{100}{100-\text { Loss } \%} \times \mathrm{SP} \\
& =\frac{100}{100-10} \times ₹ 198 \\
& =₹ \frac{100 \times 198}{90}=₹ 10 \times 22 \\
& =₹ 220 \\
\text { Total SP } & =₹ 198 \times 2=₹ 396 \\
\mathrm{CP} & =₹(180+220)=₹ 400 \\
\mathrm{CP} & >\mathrm{SP} \\
\text { Loss } & =₹(400-396)=₹ 4 \\
\text { Loss } \% & =\frac{\text { Loss } \times 100}{\mathrm{CP}} \\
& =\frac{4 \times 100}{400}=\frac{100}{100}=1 \\
\text { Loss } & =\mathbf{1} \%
\end{aligned}
\end{aligned}
$$

12. $C P=₹ 960$, Profit $=5 \%$

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{100+5}{100} \times 960 \\
& =\frac{105 \times 960}{100}=₹ \frac{100800}{100}=₹ 1008
\end{aligned}
$$

Again Subramaniam sold it to Mukul at a profit of 10\%

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{100+10}{100} \times 1008 \\
& =\frac{110 \times 1008}{100} \\
& =₹ \frac{110880}{100}=₹ \mathbf{1 1 0 8 . 8 0}
\end{aligned}
$$

13. $\mathrm{SP}=150$, Loss $\%=4 \%$

$$
\begin{aligned}
\mathrm{CP} & =\frac{100}{100-\text { Loss } \%} \times \mathrm{SP} \\
& =\frac{100}{100-4} \times 150=₹ \frac{100}{96} \times 150 \\
& =₹ 156.25 \\
\text { Again } \quad \mathrm{SP} & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
\mathrm{SP} & =\frac{100+20}{100} \times 156.25 \\
& =\frac{120 \times 156.25}{100}=₹ \mathbf{1 8 7 . 5 0}
\end{aligned}
$$

14. $\mathrm{CP}=200$, Profit $=30 \%$

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{100+30}{100} \times \mathrm{CP} \\
& =\frac{130 \times 200}{100}=₹ 260
\end{aligned}
$$

Cost price of 20 orange

$$
=₹ 20 \times 2=₹ 40
$$

$C P=40$, Profit $=5 \%$

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{(100+5)}{100} \times ₹ 40 \\
& =₹ \frac{105 \times 40}{100}=₹ 10.5 \times 4=₹ 42
\end{aligned}
$$

Cost of remaining orange CP $=80 \times 2=160$

$$
\begin{gathered}
\mathrm{SP}=(260-42)=₹ 218 \\
\text { SP }>\mathrm{CP} \\
\text { Profit }=₹(218-160)=₹ 58
\end{gathered}
$$

$$
\begin{aligned}
\text { Profit } \% & =\frac{\text { Profit } \times 100}{\text { C. P. }} \\
& =\frac{₹ 58 \times 100}{160}=36.25 \% \\
& =\mathbf{3 6 . 2 5 \%}
\end{aligned}
$$

EXERCISE 11.3

1. (i) $P=₹ 500, R=12 \%, T=3$ years

$$
\begin{aligned}
\text { S.I. } & =\frac{P \times R \times T}{100} \\
& =\frac{500 \times 12 \times 3}{100}=₹ \mathbf{1 8 0}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $P=₹ 560$, Time $=\frac{73}{365}$ years, S.I. $=₹ 14$

$$
\begin{aligned}
R & =\frac{S . I . \times 100}{P \times T} \\
& =\frac{14 \times 100 \times 365}{560 \times 73}=\mathbf{1 2 . 5 \%}
\end{aligned}
$$

(v) Do yourself.
(vi) $P=₹ 720, R=4 \%$, S.I. $=₹ 72$

$$
\begin{aligned}
\text { Time } & =\frac{\mathrm{S.I} \times 100}{\mathrm{R} \times \mathrm{P}} \\
& =\frac{72 \times 100}{4 \times 720}=\frac{100}{40}=2 \frac{1}{2} \text { Years } \\
\text { Amount } & =P+\text { S.I. } \\
& =₹ 720+₹ 72=₹ \mathbf{7 9 2}
\end{aligned}
$$

2. (i), (ii) Do yourself.
(iii) $P=₹ 600, R=2 \%, T=\frac{20}{12}=\frac{5}{3}$ years

$$
\text { S.I. }=\frac{P \times R \times T}{100}=\frac{600 \times 2 \times 5}{3 \times 100}=₹ 20
$$

$$
\begin{aligned}
\text { Amount } & =P+\text { S.I. } \\
& =₹(600+20)=₹ \mathbf{6 2 0}
\end{aligned}
$$

3. (i), (ii) Do yourself.
(iii) S.I. = ₹ 12600

$$
\begin{aligned}
& R=18 \% \text { per annum } \\
& P=10000 \\
& T=\frac{S . \mathrm{I} . \times 100}{P \times R}=\frac{12600 \times 100}{10000 \times 18}=7 \text { Years. }
\end{aligned}
$$

4. (i) $\mathrm{SI}=₹ 36, R=3 \%$ and $T=3$ years

$$
\begin{aligned}
P & =\frac{S I \times 100}{R \times T} \\
& =\frac{36 \times 100}{3 \times 3}=₹ \mathbf{3 4 0 0}
\end{aligned}
$$

(ii), (iii) Do yourself.
5. (i) $P=₹ 500$, S.I. $=₹ 150, T=4$ Years

$$
R=\frac{\mathrm{S} . \mathrm{I} . \times 100}{P \times T}=\frac{150 \times 100}{500 \times 4}=\frac{30}{4}=\mathbf{7 . 5 \%}
$$

(ii) Do yourself.
(iii) $P=700$, S.I. $=₹ 168, T=\frac{16}{12}$ years

$$
\begin{aligned}
R & =\frac{S . I . \times 100}{P \times T} \\
& =\frac{168 \times 100 \times 12}{700 \times 16}=\mathbf{1 8 \%}
\end{aligned}
$$

6. $P=₹ 7200, R=15 \%, T=4 \frac{1}{2}$ years $=\frac{9}{2}$ years

$$
\begin{aligned}
\text { S.I. } & =\frac{P \times R \times T}{100} \\
& =\frac{7200 \times 15 \times 9}{2 \times 100}=36 \times 15 \times 9 \\
& =4860 \\
A & =\text { S.I. }+P \\
& =4860+7200=₹ \mathbf{1 2 0 6 0}
\end{aligned}
$$

7., 8, 9. Do yourself.
10. Let P be $x, R=10 \%, T=4$ years, $A=₹ 2520$

$$
\begin{aligned}
A & =\text { S.I. }+P \\
2520-x & =\text { S.I. } \\
& =\frac{\text { S.I. } \times 100}{R \times T} \\
x & =\frac{(2520-x) \times 100}{10 \times 4} \\
4 x & =25200-10 x \\
14 x=25200 \Rightarrow x & =\frac{25200}{14} \\
x & =₹ \mathbf{1 8 0 0}
\end{aligned}
$$

11. Do yourself.
12. Let P be $x, R=9 \%$, S.I. $=594, T=3$ years

$$
P=\frac{\mathrm{S} . \mathrm{I} \cdot \times 100}{R \times T}
$$

$$
\begin{aligned}
& =\frac{594 \times 100}{9 \times 3}=22 \times 100 \\
& =₹ \mathbf{2 2 0 0}
\end{aligned}
$$

EXERCISE 11.4

1. $P=₹ 1500, A=₹ 2655$, S.I. $=A-P=₹ 1155, T=\frac{7}{2}$ years

$$
\begin{aligned}
R & =\frac{\mathrm{S.I} \times 100}{P \times T} \\
& =\frac{1155 \times 100 \times 2}{1500 \times 7}=\frac{2310}{105}=\mathbf{2 2} \%
\end{aligned}
$$

2. Let P be x and amount $=\frac{7 x}{4}$

$$
\begin{aligned}
\text { S.I. } & =\text { Amount }- \text { Principal } \\
& =\frac{7 x}{4}-x=\frac{3 x}{4} \\
P & =x, \text { S.I. }=\frac{3 x}{4}, T=6 \text { years } \\
R & =\frac{\text { S.I. } \times 100}{P \times T}=\frac{3 x \times 100}{4 \times x \times 6}=\mathbf{1 2 . 5 \%}
\end{aligned}
$$

3. Do yourself.
4. Let $P=x, A=2 x$, S.I. $=2 x-x=x, R=\frac{25}{2} \%, T=$?

$$
\begin{aligned}
T & =\frac{\mathrm{S} . \mathrm{I} \cdot \times 100}{P \times R} \\
& =\frac{x \times 100 \times 2}{x \times 25}=\mathbf{8} \text { years }
\end{aligned}
$$

7. $P=₹ 4500, T=1$ year, $A=₹ 5265$

$$
\begin{aligned}
\text { S.I. } & =₹(5265-4500)=₹ 765 \\
R & =? \\
R & =\frac{\text { S.I. } \times 100}{P \times T} \\
& =\frac{765 \times 100}{4500 \times 1}=\frac{765}{45}=17 \%
\end{aligned}
$$

For Sanjiv

$$
P=₹ 4500, T=3, R=17 \%, \text { S.I. }=?
$$

$$
\text { S.I. }=\frac{P \times R \times T}{100}=\frac{4500 \times 17 \times 3}{100}
$$

$$
=₹ 2295
$$

Amount = Principal + S.I.

$$
=₹ 4500+₹ 2295 \text { = ₹ } \mathbf{6 7 9 5}
$$

8. Do yourself.

Let's Recall

1. (a) Total number of invalid votes $=20 \%$ of 7500

$$
=\frac{20 \times 7500}{100}=1500
$$

Total number of valid votes polled $=7500-1500=6000$
Number of valid votes polled in favour of the candidate

$$
\begin{aligned}
& =55 \% \text { of } 6000 \\
& =\frac{55 \times 6000}{100}=3300
\end{aligned}
$$

Thus, the number of valid votes that the other candidate got

$$
=6000-3300=\mathbf{2 7 0 0}
$$

2. (d) Let number of apples with fruitseller $=x$

Number of apples to be sold $=x$ of $40 \%=x \times \frac{40}{100}=x \times \frac{2}{5}=\frac{2 x}{5}$
Number of remaining apples $=420$

$$
\begin{aligned}
x-\frac{2 x}{5} & =420 \\
\frac{5 x-2 x}{5} & =420 \\
\frac{3 x}{5} & =420 \\
3 x & =420 \times 5 \\
x & =\frac{420 \times 5}{3} \\
x & =700
\end{aligned}
$$

Thus number of apples that originally he had $=\mathbf{7 0 0}$
4. (c)

$$
\begin{aligned}
\mathrm{CP} & =₹ 1400 \\
\text { Loss } & =15 \% \text { of } ₹ 1400 \\
& =1400 \times 15 \% \\
& =1400 \times \frac{15}{100}=₹ 210
\end{aligned}
$$

Selling Price (SP) $=\mathrm{CP}-$ Loss $₹ 1400-₹ 210$

$$
\text { = ₹ } 1190
$$

5. (b) $\mathrm{CP}=₹ 4700+₹ 800=₹ 5500$

$$
\begin{aligned}
\text { SP } & =₹ 5800 \\
\text { Gain } & =\mathrm{SP}-\mathrm{CP} \\
& =₹ 5800-₹ 5500 \\
& =₹ 300 \\
\text { Gain per cent } & =\frac{\text { gain } \times 100}{\mathrm{CP}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{300 \times 100}{5500} \\
& =\frac{60}{11}=\mathbf{5} \frac{\mathbf{5}}{\mathbf{1 1}} \%
\end{aligned}
$$

7. (c) Interest $=₹ 5400$

Rate $(R)=12 \%$
Time (T) = 3 years

$$
\begin{aligned}
\text { Interest } & =\frac{P \times R \times T}{100} \\
5400 & =\frac{P \times 12 \times 3}{100} \\
12 \times 3 \times P & =5400 \times 100 \\
P & =\frac{5400 \times 100}{12 \times 3} \\
& =₹ \mathbf{1 5 0 0 0}
\end{aligned}
$$

Unit-V : Mensuration

18.

Areas of Rectilinear Figures

EXERCISE 18

1. Side of square park $=100 \mathrm{~m}$

Width of path $=5 \mathrm{~m}$
Area of path $=($ Area of square $A B C D$
-Area of square $E F G H$)

$$
\begin{aligned}
& =(100 \times 100-90 \times 90) \mathrm{m}^{2} \\
& =10000-8100 \\
& =\mathbf{1 9 0 0} \mathbf{m}^{\mathbf{2}}
\end{aligned}
$$

2. Length $=90 \mathrm{~m}$, wide $=75 \mathrm{~m}$
$A B=90+10=100$
$B C=75+10=85$
Area of path
$=($ Area of rectangle $A B C D$
-Area of rectangleEFGH)

$$
\begin{aligned}
& =(100 \times 85-90 \times 75) \mathrm{m}^{2} \\
& =1750 \mathrm{~m}^{2}
\end{aligned}
$$

3., 4., 5., 6., 7. Do yourself.
8. (i) Length of room $=5.5 \mathrm{~m}$

Breadth of room $=4 \mathrm{~m}$

$$
\begin{aligned}
A B & =5.5+2.5=8 \\
B C & =4+2.5 \\
& =6.5 \mathrm{~m}
\end{aligned}
$$

Width of verandah $=1.25 \mathrm{~m}$

Area of verandah
$=$ (Area of rectangle $A B C D$

- Area of rectangle $E F G H$)
$=(8 \times 6.5-5.5 \times 4) \mathrm{m}^{2}$
$=\mathbf{3 0} \mathrm{m}^{2}$
(ii) Cost of cementing the floor of verandah $=₹ 30 \times 25$

$$
\text { = ₹ } 750
$$

9., 10. Do yourself.
11. Area of the cross road $E F G H$ parallel to the length of the park

$$
\begin{aligned}
& =700 \mathrm{~m} \times 5 \mathrm{~m} \\
& =3500 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the cross road IJKL parallel to the breadth of the park.

$$
\begin{aligned}
& =300 \times 5 \\
& =1500 \mathrm{~m}^{2}
\end{aligned}
$$

From the figure, we observe that the shaded area.
$P Q R S$ has been included in both the cross road.
But it should come once only.

$$
\begin{aligned}
\text { Area of } \begin{aligned}
P Q R S & =5 \mathrm{~m} \times 5 \mathrm{~m} \\
& =25 \mathrm{~m}^{2}
\end{aligned}, ~
\end{aligned}
$$

Area of road $=$ Area of $E F G H+$ Area of $I J K L-A r e a ~ o f ~ P Q R S ~$

$$
=(3500+1500-25)=4975 \mathrm{~m}^{2}
$$

Cross of constructing the roads $=4975 \times 105=₹ \mathbf{5 2 2 3 7 5}$
12., 13., Do youself.
14. Side of square $=2.60 \mathrm{~m}$

Area of Strip $=$ Area of $A B C D-$ Area of $E F G H$

$$
\begin{aligned}
A B= & 2.60+0.40=3 \mathrm{~m} \\
B C= & 2.60+0.40=3 \mathrm{~m} \\
& =(3 \times 3-2.60 \times 2.60) \mathrm{m}^{2} \\
& =\mathbf{2 . 2 4} \mathbf{~ m}^{2}
\end{aligned}
$$

Area of enlarged flowerbed $=(3 \times 3) \mathrm{m}^{2}$

$$
=9 \mathrm{~m}^{2}
$$

15. Area of total paths
$=($ Area of $L K I J+$ Area of $E F G H$

- Area of PMNO)
$=(32 \times 1.5+18 \times 1-1.5 \times 1) \mathrm{m}^{2}$
$=64.5^{2} \mathrm{~m}$

16. Do yourself.

17. (i) In a rectangular field length $=94$
m
Breadth $=32 \mathrm{~m}$
Area of road $=I J C D$

$$
=94 \times 2=188 \mathrm{~m}^{2}
$$

Area of road $=(A E H I+B F G J)$

$$
\begin{aligned}
& =(30 \times 2+30 \times 2) \\
& =(60+60) \\
& =120 \mathrm{~m}^{2}
\end{aligned}
$$

Total area of road $=(188+120) \mathrm{m}^{2}=\mathbf{3 0 8} \mathbf{m}^{\mathbf{2}}$
(ii) Not covered Area of roads

$$
\begin{aligned}
& =\text { Area of } A B C D-\text { Area of three roads. } \\
& =(94 \times 32-308) \mathrm{m}^{2}=\mathbf{2 7 0 0} \mathbf{m}^{2}
\end{aligned}
$$

18. Do yourself.

Let's Recall

1. (c) Let Area of square $A_{1}=(\text { Side })^{2}$
and Area of square $A_{2}=(2 \times \text { Side })^{2}$

$$
\begin{aligned}
\frac{A_{1}}{A_{2}} & =\frac{(\text { Side })^{2}}{4(\text { Side })^{2}} \\
A_{2} & =4 A_{1}
\end{aligned}
$$

Therefore. If the side of square is doubled then its area becomes four times.
2. (b) In the rectangle $A B C D, l=4 \mathrm{~m}$ and $b=3 \mathrm{~m}$
Area of $A B C D=4 \mathrm{~m} \times 3 \mathrm{~m}=12 \mathrm{~m}^{2}$
The length of bedsheet with border

$$
\begin{aligned}
& =4 \mathrm{~m}+2 \times \frac{25}{100} \mathrm{~m} \\
l & =4 \mathrm{~m}+0.5 \mathrm{~m} \\
l & =4.5 \mathrm{~m}
\end{aligned}
$$

The width of bedsheet with border $=3 \mathrm{~m}+2 \times \frac{25}{100} \mathrm{~m}$

$$
\begin{aligned}
b & =3 \mathrm{~m}+0.5 \mathrm{~m} \\
b & =3.5 \mathrm{~m}
\end{aligned}
$$

Then, The area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}=4.5 \mathrm{~m} \times 3.5 \mathrm{~m}=15.75 \mathrm{~m}^{2}$
The area of border $=15.75 \mathrm{~m}^{2}-12 \mathrm{~m}^{2}=3.75 \mathrm{~m}^{2}$
Per m^{2} rate $=₹ 50$
$3.75 \mathrm{~cm}^{2}$ rate will be $=₹ 50 \times 3.75=₹ 187.50$
Therefore cost of printing the border $=₹ \mathbf{1 8 7 . 5 0}$
3. (a) According to question,

Area of rectangle $=90 \%$ of area of square

$$
\begin{aligned}
360 & =\frac{90}{100} \times(\text { side })^{2} \\
\frac{360 \times 100}{90} & =(\text { side })^{2} \\
400 & =(\text { side })^{2} \\
\text { Side }^{2} & =400 \\
\text { Side } & =\sqrt{400} \\
\text { Side } & =\mathbf{2 0} \mathbf{~ m}
\end{aligned}
$$

19.

Volumes And
 Surface Areas

EXERCISE 19.2

1. (i) Volume of cube $=(\text { side })^{3}$

$$
(15)^{3}=\mathbf{3 3 7 5} \mathbf{~ m m}^{\mathbf{3}}
$$

(ii), (iii), (iv) Do yourself.
2. (i) length $=12 \mathrm{~cm}$, breadth $=10 \mathrm{~cm}$, height $=8 \mathrm{~cm}$

$$
\begin{aligned}
\text { Volume of cuboid } & =\text { length } \times \text { breadth } \times \text { height } \\
& =12 \mathrm{~cm} \times 10 \mathrm{~cm} \times 8 \mathrm{~cm} \\
& =\mathbf{9 6 0} \mathbf{~ c m}^{\mathbf{3}}
\end{aligned}
$$

(ii), (iii), (iv), (v), (vi) Do yourself.
3. Volume of cuboidal wood $=36 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\text { Length } & =4 \mathrm{~cm}, \text { Breadth }=3 \mathrm{~cm} \\
\text { Height } & =\frac{\text { Volume }}{\text { Length } \times \text { Breadth }} \\
& =\frac{36}{4 \times 3} \mathrm{~cm}=\mathbf{3} \mathbf{~ c m}
\end{aligned}
$$

4. Do yourself.
5. One match box volume $=4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$

Such 12 match box volume $=12 \times 4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$

$$
=180 \mathrm{~cm}^{3}
$$

6. , 7. Do yourself.
7. Volume of cuboidal pit $=8 \mathrm{~m} \times 6 \mathrm{~m} \times 3 \mathrm{~m}$

$$
\begin{aligned}
& =144 \mathrm{~m}^{3} \\
\text { Cost of digging } & =144 \times ₹ 30 \\
& =₹ 4320
\end{aligned}
$$

9. Total required water of population of village $=150 \times 4000$
$=600000 \mathrm{~L}$

$$
\begin{aligned}
1000 \mathrm{~L} & =1 \mathrm{~m}^{3} \\
600000 \mathrm{~L} & =600 \mathrm{~m}^{3} \\
\text { Days } & =\frac{20 \times 15 \times 6}{600} \\
& =\frac{6}{3}=\text { 3days }
\end{aligned}
$$

10.

$$
\begin{aligned}
1000 \mathrm{~L} & =1 \mathrm{~m}^{3} \\
50000 \mathrm{~L} & =\frac{50000}{1000}=50 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { Volume of cuboid }=\text { Length } \times \text { Breadth } \times \text { Height }
$$

$$
50=2.5 \times 10 \times \text { Breadth }
$$

$$
\text { Breadth }=\frac{50}{2.5 \times 10}=\mathbf{2} \mathbf{~ m}
$$

11. Joined to two cubes end to end then

$$
\begin{aligned}
& \text { Length }=12 \mathrm{~cm}, \text { Breadth }=6 \mathrm{~cm}, \\
& \text { Height }=6 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Volume of cuboid }=12 \times 6 \times 6 \mathrm{~cm}^{3}
$$

$$
=432 \mathrm{~cm}^{3}
$$

12. Number of wooden crates which can be put in the godown

$$
\begin{aligned}
& =\frac{(40 \times 25 \times 15) \mathrm{m}^{3}}{(1.5 \times 1.25 \times 0.5) \mathrm{m}^{3}} \\
& =\mathbf{1 6 0 0 0} \text { crates }
\end{aligned}
$$

13. Side of cube $=x$

Volume of cube $=x^{3}$
(i) Doubled then $2 x$

Volume of cube $=(2 x)^{3}=8 x^{3}=\mathbf{8}$ times
(ii), (iii) Do yourself.
14. Do yourself.
15. Number of cubical blocks $=\frac{3.60 \times 3.60 \times 3.60}{0.12 \times 0.12 \times 0.12}=\mathbf{2 7 0 0 0}$ blocks

EXERCISE 19.3

1. Surface area of cube $=6 a^{2}$

$$
=6 \times(11)^{2}=6 \times 121=\mathbf{7 2 6} \mathrm{cm}^{2}
$$

(ii), (iii) Do yourself.
2. Do yourself.
3. Total surface area of lunch box

$$
\begin{aligned}
& =2(l \times b+b \times h+h \times l) \\
& =2(15 \times 9+9 \times 8+8 \times 15) \\
& =2 \times 327=654 \mathrm{~cm}^{2}
\end{aligned}
$$

4., 5., 6. Do yourself.
7. Surface area $=2\left(l^{2}+l^{2}+l^{2}\right)=6 l^{2}=6 \times 15 \times 15=1350$
8., 9., 10., 11. Do yourself.
12. As given in hint, firstly the surface area of a brick and secondly divide $9.375 \mathrm{~m}^{2}$ from the calculated area. Number of bricks will be found.
13. Area of four walls $=2 \times h(l+b)$

$$
=2 \times 5 \times(10+8)=180 \mathrm{~m}^{2}
$$

Required length of wallpaper $l \times \frac{50}{100}=\frac{180}{1}$

$$
\begin{aligned}
& l=\frac{180 \times 100}{50} \mathrm{~m} \\
& l=180 \times 2=\mathbf{3 6 0} \mathbf{~ m}
\end{aligned}
$$

14. Do yourself.
15. Area of four walls $=2 \times h \times(l+b)$

$$
\begin{aligned}
& =2 \times 5 \times(15+10) \\
& =10 \times 25=250 \mathrm{~m}^{2} \\
\text { Area of roof } & =l \times b \\
& =15 \times 10=150 \mathrm{~m}^{2} \\
\text { Total painted area } & =(250+150) \mathrm{m}^{2}=\mathbf{4 0 0} \mathbf{m}^{2}
\end{aligned}
$$

Let's Recall

1. (c) According to question

$$
\begin{aligned}
b & =2 \times h \\
b & =2 h \text { and } \\
b & =\frac{1}{2} \times l \\
2 h & =\frac{1}{2} l \\
h & =\frac{1}{4} l
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of room } & =512 \mathrm{~m}^{3} \\
l \times b \times h & =512 \mathrm{~m}^{3} \\
l \times \frac{1}{2} l \times \frac{1}{4} l & =512 \mathrm{~m}^{3} \\
l^{3} & =512 \times 8 \\
l^{3} & =16 \times 16 \times 2 \times 8 \\
l^{3} & =16 \times 16 \times 16 \\
l^{3} & =16^{3} \\
l & =\mathbf{1 6} \mathbf{~ m}
\end{aligned}
$$

2. (c) Volume of wall $=l \times b \times h \quad[\because 1 \mathrm{~m}=100 \mathrm{~cm}]$

$$
\begin{aligned}
& =800 \mathrm{~cm} \times 600 \mathrm{~cm} \times 22.5 \mathrm{~cm} \\
& =10800000 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of each brick $=25 \mathrm{~cm} \times 11.25 \mathrm{~cm} \times 6 \mathrm{~cm}$

$$
=1687.50 \mathrm{~cm}^{3}
$$

Required number of bricks to build a wall

$$
\begin{aligned}
& =\frac{\text { Volume of wall }}{\text { Volume of one bricks }} \\
& =\frac{10800000 \mathrm{~cm}^{3}}{1687.50 \mathrm{~cm}^{3}}=\mathbf{6 4 0 0} \text { bricks }
\end{aligned}
$$

Thus number of bricks needed to buld a wall is 6400

Unit-VI : Statistics

20.

Data Handling

EXERCISE 20.3

3. (a) $m=4, n=52$

$$
P(A)=\left(\frac{m}{n}\right)=\frac{4}{52}=\frac{\mathbf{1}}{\mathbf{1 3}}
$$

(b) $m=26, n=52$

$$
P(A)=\left(\frac{26}{52}\right)=\left(\frac{m}{n}\right)=\frac{\mathbf{1}}{\mathbf{2}}
$$

(c) $m=[4$ kings $+(26$ Red -2 Red kings $)]$
and

$$
=4+24=28
$$

$$
\therefore \quad P(A)=\left(\frac{m}{n}\right)=\frac{28}{52}=\frac{7}{13}
$$

(d) $m=2, n=52$

$$
P(A)=\frac{m}{n}=\frac{2}{52}=\frac{\mathbf{1}}{\mathbf{2 6}}
$$

