Advance Mathematics-8

Revision

2. (i) $\frac{48}{72}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$
(ii) $\frac{-65}{91}=\frac{-5}{\mathbf{7}}$
(iii) $\frac{-125}{-175}=\frac{125}{175}=\frac{\mathbf{5}}{\mathbf{7}}$
(iv) $\frac{-63}{135}=\frac{-7}{15}$
(v) $\frac{231}{-1001}=\frac{-\mathbf{3}}{\mathbf{1 3}}$
3. $\frac{10}{16}, \frac{35}{56}, \frac{80}{128}, \frac{1200}{1920}, \frac{5000}{8000}$
4. (i) $\frac{2}{3}+\frac{7}{6}+\frac{1}{12}$

The L.C.M. of $3,6,12$ is 24 .

$$
=\frac{8 \times 2+4 \times 7+2 \times 1}{24}=\frac{16+28+2}{24}=\frac{46}{24}=\frac{\mathbf{2 3}}{\mathbf{1 2}}
$$

(ii) Do yourself.
(iii) $\frac{7}{5}+\frac{11}{15}+\frac{13}{20}$

The L.C.M of, $5,15,20$ is 60 .

$$
=\frac{7 \times 12+11 \times 4+13 \times 3}{60}=\frac{84+44+39}{60}=\frac{\mathbf{1 6 7}}{\mathbf{6 0}}
$$

(iv) $\frac{4}{7}+\frac{21}{70}+\frac{3}{5}$

The L.C.M. of 5, 7 and 70 is 70 .

$$
=\frac{4 \times 10+21 \times 1+14 \times 3}{70}=\frac{40+21+42}{70}=\frac{\mathbf{1 0 3}}{\mathbf{7 0}}
$$

7. (i) $\frac{4}{5}-\frac{2}{5}=\frac{2}{5}$
(ii) $\frac{4}{5}-\frac{2}{3}=\frac{12-10}{15}=\frac{\mathbf{2}}{\mathbf{1 5}}$
(iii) $\frac{1}{6}-\frac{4}{5}=\frac{5 \times 1-6 \times 4}{30}=\frac{5-24}{30}=\frac{-\mathbf{1 9}}{\mathbf{3 0}}$
(iv) Do yourself.
(v) Do yourself.
(vi) $0-\frac{7}{9}=\frac{-7}{9}$
8. (i) $\frac{2}{3}+\frac{4}{5}-\frac{1}{6}$

The L.C.M. of 3,5 and 6 is 30 .

$$
=\frac{2 \times 10+4 \times 6+(-1 \times 5)}{30}=\frac{20+24-5}{30}=\frac{44-5}{30}=\frac{39}{30}=\frac{\mathbf{1 3}}{\mathbf{1 0}}
$$

(ii), (iii) Do yourself.
(iv) $3+\frac{1}{2}-6 \frac{1}{4}=\frac{3}{1}+\frac{1}{2}-\frac{25}{4}$ The L.C.M. of 1,2 and 4 is 4 .

$$
\Rightarrow \quad \frac{3 \times 4+1 \times 2-25 \times 1}{4}=\frac{12+2-25}{4}=\frac{14-25}{4}=\frac{-11}{4}
$$

9. (i) $\frac{4}{5} \times \frac{7}{8}=\frac{7}{10}$
(ii) $\frac{2}{3} \times \frac{6}{11}=\frac{\mathbf{4}}{11}$
(iii) Do yourself.
(iv) $\frac{4}{11} \times\left(\frac{-1}{6}\right)=\frac{-4}{66}=\frac{-\mathbf{2}}{\mathbf{3 3}}$
10. $x+\frac{5}{11}=\frac{-26}{33} \Rightarrow x=\frac{-26}{33}-\frac{5}{11}=\frac{-26 \times 1-3 \times(5)}{33}$

$$
=\frac{-26-15}{33}=\frac{-\mathbf{4 1}}{\mathbf{3 3}}
$$

12. Let the one number be x.

$$
x+\frac{-15}{4}=\frac{3}{2} \Rightarrow x=\frac{3}{2}+\frac{15}{4}=\frac{3 \times 2+15 \times 1}{4}=\frac{6+15}{4}=\frac{\mathbf{2 1}}{\mathbf{4}}
$$

14. Let the other number be $x ; \Rightarrow-5 \times x=-9 ; x=\frac{9}{5}=1 \frac{4}{5}$
15. $\frac{-5}{6} \times x=\frac{-25}{18}$ $x=\frac{25 \times 6}{5 \times 18}=\frac{5}{3}=\mathbf{1} \frac{\mathbf{2}}{\mathbf{3}}$
16. Sum $=\frac{-3}{2}+\frac{-9}{4}=\frac{-6-9}{4}=\frac{-15}{4}$

Difference $=\frac{-3}{2}+\frac{9}{4}=\frac{-6+9}{4}=\frac{3}{4}$
Divide $=\frac{-15 \times 4}{4 \times 3}=-\mathbf{5}$
17. (i) $\frac{27}{64}=\frac{3^{3}}{4^{3}}=\left(\frac{3}{4}\right)^{3}$

3	27
3	9
3	3
	1

4	64
4	16
4	4
	1

(ii), (iii), (iv) Do yourself.
18. $\left(\frac{6}{7}\right)^{4} \times\left(\frac{6}{7}\right)^{-9}=\left(\frac{6}{7}\right)^{2 m-1} \Rightarrow\left(\frac{6}{7}\right)^{4-9}=\left(\frac{6}{7}\right)^{2 m-1}$
$-5=2 m-1 \Rightarrow 2 m=-4 \Rightarrow m=-2$
19. $\left(\frac{3}{4}\right)^{-3} \div\left(\frac{4}{5}\right)^{-2}=\left(\frac{4}{3}\right)^{3} \div\left(\frac{5}{4}\right)^{2}=\frac{4 \times 4 \times 4}{3 \times 3 \times 3} \div \frac{5 \times 5}{4 \times 4}$

$$
\begin{aligned}
& =\frac{4 \times 4 \times 4}{3 \times 3 \times 3} \times \frac{4 \times 4}{5 \times 5}=\frac{4^{5}}{3^{3} \times 5^{2}} \\
\text { Reciprocal } & =\frac{\mathbf{3}^{\mathbf{3}} \times \mathbf{5}^{2}}{\mathbf{4}^{\mathbf{5}}}
\end{aligned}
$$

20. $\frac{p}{q}=\left(\frac{16}{11}\right)^{0} \div\left(\frac{32}{33}\right)^{-1}=\frac{p}{q}=1 \div\left(\frac{33}{32}\right)^{1}=1 \times \frac{32}{33}=\frac{32}{33}$

$$
\left(\frac{p}{q}\right)^{-2}=\left(\frac{32}{33}\right)^{-2}=\left(\frac{1024}{1089}\right)^{-1}=\frac{\mathbf{1 0 8 9}}{\mathbf{1 0 2 4}}
$$

21. (i) $\frac{1}{4}=\mathbf{0 . 2 5}$
(ii), (iii), (iv) Do yourself.
22. Do yourself.

23
(i) $\frac{2}{3} \times \frac{2}{3}=\left(\frac{\mathbf{2}}{\mathbf{3}}\right)^{2}$
(ii), (iii), (iv) Do yourself.
24. (i) $123.456=1.23456 \times 10^{2}$
(ii) $2345.678=2.345678 \times 10^{3}$
(iii) $0.45678=4.5678 \times 10^{-1}$
(iv) $0.0076543=7.6543 \times 10^{-3}$
25. (i) $1.311 \times 10^{-2}=131.1$
(ii), (iii) (iv) Do yourself.
26. Days Work
20
15

$$
\frac{15}{20}=\frac{x}{1} \Rightarrow x=\frac{\mathbf{3}}{\mathbf{4}} \text { part }
$$

27. Labours

Days
10
8

$$
\begin{aligned}
\frac{x}{15} & =\frac{10}{8} \Rightarrow 8 \times x=10 \times 15 \\
x & =\frac{10 \times 15}{8}=\mathbf{1 8} \frac{\mathbf{3}}{\mathbf{4}} \text { days }
\end{aligned}
$$

28. Speed $=\frac{\text { Distance }}{\text { Time }} \Rightarrow 4=\frac{18}{t}$

$$
\Rightarrow \quad t=\frac{18}{4}=\frac{9}{2} \Rightarrow t=\mathbf{4} \frac{\mathbf{1}}{\mathbf{2}} \text { hours }
$$

29. Do yourself.
30. Total Alloy $=20+100=120$

$$
\% \text { of tin }=\frac{20 \times 100}{120}=\frac{50}{3}=\mathbf{1 6} \frac{\mathbf{2}}{\mathbf{3}} \%
$$

31., 32. Do yourself.
33. S.I. $=\frac{P \times R \times T}{100}=\frac{500 \times 12 \times 3}{100}=₹ 180$ S.I. $=₹ \mathbf{1 8 0}$

$$
\text { Amount }=₹(500+180)=₹ \mathbf{6 8 0}
$$

34., 35. Do yourself.
36. S.I. $=\frac{P \times R \times T}{100} \Rightarrow 227.50=\frac{728 \times x \times 5}{100}$
$\Rightarrow x=\frac{22750}{5 \times 728} ; x=\mathbf{6} \frac{\mathbf{1}}{\mathbf{4}} \%$
37. Do yourself.
38. (i) $x^{4}-81=\left(x^{2}\right)^{2}-(9)^{2}=\left(x^{2}+9\right)\left(x^{2}-9\right)$

$$
=\left(x^{2}+9\right)\left[(x)^{2}-(3)^{2}\right]=\left(\boldsymbol{x}^{2}+\mathbf{9}\right)(\boldsymbol{x}+\mathbf{3})(\boldsymbol{x}-\mathbf{3})
$$

(ii) $12 x^{3}-12 x=12 x\left(x^{2}-1\right)=\mathbf{1 2} \boldsymbol{x}(\boldsymbol{x}+\mathbf{1})(\boldsymbol{x}-\mathbf{1})$
(iii) $6(a-3 b)^{2}-4(a-3 b)=2$

$$
\begin{aligned}
(a-3 b) & =\{3(a-3 b)-2\} \\
& =\mathbf{2}(\boldsymbol{a}-\mathbf{3} \boldsymbol{b})(\mathbf{3 a}-\mathbf{9 b}-\mathbf{2})
\end{aligned}
$$

(iv) Do yourself.
39. Let the number be $2 x, x$ and $\frac{2 x}{3}$

$$
\begin{aligned}
2 x+x+\frac{2 x}{3} & =132,3 x+\frac{2 x}{3} \\
& =132,9 x+2 x=132 \times 3 \\
11 x & =132 \times 3 \Rightarrow x=\frac{132 \times 3}{11}, x=\mathbf{3 6}
\end{aligned}
$$

The numbers be 72, 36 and 24.
40. Do yourself.
41. Let the breadth $=x$ and length $=11+x$

Perimeter of rectangle $=2 \times(l+b)$

$$
126=2 \times(11+x+x)
$$

or

$$
63=11+2 x
$$

$$
63-11=2 x \text { or } 52=2 x
$$

$$
\Rightarrow \quad x=\mathbf{2 6}
$$

Length $=11+26=\mathbf{3 7} \mathrm{cm}$, Breadth $=\mathbf{2 6} \mathbf{~ c m}$
42.
(i) $5 a^{2}-6 a(a-2)+a(3+5 a)=5 a^{2}-6 a^{2}+12 a+3 a+5 a^{2}$

$$
=4 a^{2}+15 a
$$

(ii) $y\left(y^{3}-1\right)-y^{2}\left(y^{2}-1\right)-y^{3}(y-1)$

$$
\begin{aligned}
& =y^{4}-y-y^{4}+y^{2}-y^{4}+y^{3} \\
& =-\boldsymbol{y}^{4}+\boldsymbol{y}^{\mathbf{3}}+\boldsymbol{y}^{\mathbf{2}}-\boldsymbol{y}
\end{aligned}
$$

43. $(536)^{2}-(136)^{2}=25 x$
or $(536+136)(536-136)=25 x$
or $\quad 672 \times 400=25 x$
or

$$
\begin{aligned}
x & =\frac{400 \times 672}{25} \\
& =\mathbf{1 0 7 5 2}
\end{aligned}
$$

44. (i) $\frac{5.68 \times 5.68-2.68 \times 2.68}{5.68+2.68}$ Let $a=5.68, b=2.68$

$$
\begin{aligned}
& =\frac{a \times a-b \times b}{a+b}=\frac{a^{2}-b^{2}}{a+b}=\frac{(a+b)(a-b)}{(a+b)} \\
& =a-b=5.68-2.68=\mathbf{3}
\end{aligned}
$$

(ii) Do yourself.
49. $105^{\circ}+30^{\circ}+x=180^{\circ}, x=180^{\circ}-\left(105^{\circ}+30^{\circ}\right)=180^{\circ}-135^{\circ}=45^{\circ}$
50. $x+x+2 x=180^{\circ}, 4 x=180^{\circ} \Rightarrow x=45^{\circ}$,
$45^{\circ}, 45^{\circ}$ and 90°
52. $5^{2}=3^{2}+y^{2}$

$$
25=9+y^{2} \Rightarrow y^{2}=16
$$

$$
\Rightarrow \quad y=4
$$

$$
5^{2}=4^{2}+x^{2}
$$

$25=16+x^{2} \Rightarrow x^{2}=9 \Rightarrow x=3$
Width of the road $=x+y=3+4=7 \mathbf{m}$
54. Let the angles be $x, 3 x, 7 x, 9 x$

$$
\begin{gathered}
x+3 x+7 x+9 x=360 ; 20 x=360 \Rightarrow x=18^{\circ}, \\
\mathbf{1 8}^{\circ}, \mathbf{5 4}^{\circ}, \mathbf{1 2 6}^{\circ}, \mathbf{1 6 2}^{\circ}
\end{gathered}
$$

55. $6 a^{2}=1176 \Rightarrow a^{2}=\frac{1176}{6} \Rightarrow a^{2}=196 \Rightarrow a=14 \mathrm{~cm}$,

Volume of cube $=a^{3}=(14)^{3}=\mathbf{2 7 4 4} \mathbf{~ c m}^{3}$

Unit-I : Number System

1.
 Rational Numbers

EXERCISE 1.4
7.

$$
\text { Speed }=65 \frac{1}{3} \mathrm{~km} / \mathrm{h} \text {. }
$$

$$
\text { or }=\frac{196}{3} \mathrm{~km} / \mathrm{h} .
$$

$$
\text { Time }=6 \frac{1}{2} \text { hours }
$$

$$
=\frac{13}{2} \text { hours. }
$$

$$
\text { Distance }=\text { Speed } \times \text { Time }=\frac{196}{3} \times \frac{13}{2}
$$

$$
=\frac{98}{3} \times 13=\frac{1274}{3}=424 \frac{\mathbf{2}}{\mathbf{3}} \mathbf{k m}
$$

8. Cost of 1 litre milk $=₹ 16 \frac{1}{2}$

$$
\begin{aligned}
\text { Cost of } 3 \frac{5}{7} \text { litre milk } & =₹ 16 \frac{1}{2} \times 3 \frac{5}{7} \\
& =₹ \frac{33}{2} \times \frac{26}{7}=\frac{429}{7}=₹ \mathbf{6 1} \frac{2}{7}
\end{aligned}
$$

EXERCISE 1.9

1. Quantity of paint that Ravi had $=\frac{3}{4} \mathrm{~L}$

Quantity of paint used by Ravi for a room $=\frac{1}{2} \mathrm{~L}$
Quantity of paint Ravi left $=\frac{3}{4} \mathrm{~L}-\frac{1}{2} \mathrm{~L}$

$$
=\frac{3 L-2 L}{4}=\frac{\mathbf{1}}{\mathbf{4}} \mathbf{L}
$$

Let $A L$ paint need to made it $=\frac{4}{5} \mathrm{~L}$

$$
\text { Then } \begin{aligned}
\frac{1}{4}+A & =\frac{4}{5} \\
A & =\frac{4}{5}-\frac{1}{4} \\
& =\frac{16-5}{20}=\frac{\mathbf{1 1}}{\mathbf{2 0}} \mathbf{L}
\end{aligned}
$$

2. Total quantity of sugar with $\mathrm{Kavita}=\frac{7}{9}$ cup
(a) Quantity of sugar that she used altogether $=\frac{1}{2}+\frac{1}{4}$

$$
=\frac{2+1}{4}=\frac{\mathbf{3}}{4} \mathbf{c u p}
$$

(b) Quantity of sugar she had left $=\frac{7}{9}-\frac{3}{4}$

$$
=\frac{28-27}{36}=\frac{\mathbf{1}}{\mathbf{3 6}} \mathbf{c u p}
$$

3. (a)

$$
\begin{aligned}
\text { Their total height } & =1 \frac{7}{10} \mathrm{~m}+1 \frac{5}{8} \mathrm{~m} \\
& =\frac{17}{10} \mathrm{~m}+\frac{13}{8} \mathrm{~m} \\
& =\frac{68 \mathrm{~m}+65 \mathrm{~m}}{40}=\frac{\mathbf{1 3 3}}{\mathbf{4 0}} \mathbf{~ m}
\end{aligned}
$$

(b) Difference between their heights $=1 \frac{7}{10} \mathrm{~m}-1 \frac{5}{8} \mathrm{~m}$

$$
\begin{aligned}
& =\frac{17}{10} \mathrm{~m}-\frac{13}{8} \mathrm{~m} \\
& =\frac{68 \mathrm{~m}-65 \mathrm{~m}}{40}=\frac{\mathbf{3}}{\mathbf{4 0}} \mathbf{m}
\end{aligned}
$$

6. (a) Total time spent by pulkit $=\frac{1}{4} \mathrm{hrs}+\frac{2}{5} \mathrm{hrs}$

$$
\begin{aligned}
& =\frac{5 \mathrm{hrs}+8 \mathrm{hrs}}{20} \\
& =\frac{\mathbf{1 3}}{\mathbf{2 0}} \mathbf{h r s}
\end{aligned}
$$

(b) Time spent in cleaning the second classroom $=\frac{2}{5} \mathrm{hrs}-\frac{1}{4} \mathrm{hrs}$

$$
=\frac{8 \mathrm{hrs}-5 \mathrm{hrs}}{20}=\frac{\mathbf{3}}{\mathbf{2 0}} \mathbf{h r s}
$$

7. Do yourself.
8. Fraction of money that eldest received $=\frac{7}{13}$

Fraction of remaining money $=1-\frac{7}{13}=\frac{6}{13}$
Fraction of money that next received $=\frac{6}{13} \times \frac{2}{3}=\frac{4}{13}$
Fraction of money that their third brother received $=\frac{6}{13}-\frac{4}{13}$

$$
=\frac{6-4}{13}=\frac{\mathbf{2}}{\mathbf{1 3}}
$$

9. Cost of 1 litre of milk $=₹ \frac{4}{5}$

Cost of $\frac{15}{28}$ litre of milk $=₹ \frac{4}{5} \times \frac{15}{28}=₹ \frac{\mathbf{3}}{7}$
10. Fraction of plank that is sawn off $=\frac{1}{5}$

Remaining part of plank $=1-\frac{1}{5}=\frac{4}{5}$
Fraction of plank that thrown away $=\frac{4}{5} \times \frac{3}{8}=\frac{3}{10}$
Fraction of the original plank remained $=\frac{4}{5}-\frac{3}{10}$

$$
=\frac{8-3}{10}=\frac{5}{10}=\frac{\mathbf{1}}{\mathbf{2}}
$$

11. Let two numbers are x and y

According to question $x \times y=\frac{6}{5}$
Given,

$$
x=\frac{1}{5}
$$

So,

$$
\begin{aligned}
\frac{1}{5} \times y & =\frac{6}{5} \\
y & =\frac{6}{5} \times \frac{5}{1} \\
y & =6
\end{aligned}
$$

(a) Sum of two numbers $=x+y$

$$
=\frac{1}{5}+\frac{6}{1}=\frac{1+30}{5}=\frac{\mathbf{3 1}}{\mathbf{5}}
$$

(b) Difference of two numbers $=6-\frac{1}{5}=\frac{30-1}{5}=\frac{\mathbf{2 9}}{\mathbf{5}}$
14. Fraction of chocolate taken to $A=\frac{1}{4}$

Fraction of remaining part of chocolate $=1-\frac{1}{4}=\frac{3}{4}$
Fraction of chocolate taken to $B=\frac{3}{4} \times \frac{3}{8}=\frac{9}{32}$
Fraction of remaining part of chocolate $=\frac{3}{4}-\frac{9}{32}$

$$
=\frac{24-9}{32}=\frac{15}{32}
$$

Fraction of chocolate taken to $C=\frac{15}{32} \times \frac{5}{9}=\frac{25}{96}$
Fraction of chocolate taken to $D=\frac{15}{32}-\frac{25}{96}$

$$
=\frac{45-25}{96}=\frac{20}{96}=\frac{\mathbf{5}}{\mathbf{2 4}}
$$

15. Do yourself.
16. From the figure

Area of the border
$=\left(\frac{17}{4} \times \frac{3}{7}\right)+\left(\frac{17}{4} \times \frac{3}{7}\right)+\left(\frac{17}{4} \times \frac{3}{7}\right)$

$=\frac{51}{28}+\frac{51}{28}+\frac{51}{28}$
$=\frac{51+51+51}{28}=\frac{\mathbf{1 5 3}}{\mathbf{2 8}} \mathbf{m}^{\mathbf{2}}$
17. Length of paper box $l=\frac{25}{100} \mathrm{~m}$

$$
=\frac{25}{100} \times 100 \mathrm{~cm}=25 \mathrm{~cm}
$$

$$
\text { Breadth of paper box } \begin{aligned}
b & =\frac{16}{100} \mathrm{~m} \\
& =\frac{16}{100} \times 100 \mathrm{~cm}=16 \mathrm{~cm}
\end{aligned}
$$

Height of paper box $h=\frac{5}{100} \mathrm{~m}$

$$
=\frac{5}{100} \times 100 \mathrm{~cm}=5 \mathrm{~cm}
$$

Required paper used to make the box $=2[l \times b+b \times h+h \times l]$

$$
\begin{aligned}
& =2[25 \mathrm{~cm} \times 16 \mathrm{~cm}+16 \mathrm{~cm} \times 5 \mathrm{~cm}+5 \mathrm{~cm} \times 25 \mathrm{~cm}] \\
& =2\left[400 \mathrm{~cm}^{2}+80 \mathrm{~cm}^{2}+125 \mathrm{~cm}^{2}\right] \\
& =2\left[605 \mathrm{~cm}^{2}\right] \\
& =1210 \mathrm{~cm}^{2}
\end{aligned}
$$

But surface area of lid will be subtract from total surface area then total paper used

$$
\begin{aligned}
& =1210-25 \times 16 \\
& =1210-400 \\
& =\mathbf{8 1 0} \mathbf{c m}^{2}
\end{aligned}
$$

18. Area of hall $=8 \mathrm{~m} \times \frac{11}{2} \mathrm{~m}=44 \mathrm{~m}^{2}$

Per m^{2} carpeting cost $=₹ \frac{21}{4}$
Required carpeting cost of hall $=₹ \frac{21}{4} \times 44$

$$
=21 \times 11 \text { = ₹ } 2.31
$$

19. Radius of bucket $=\frac{22}{100} \mathrm{~m}$

$$
\begin{aligned}
& =\frac{22}{100} \times 100 \mathrm{~cm} \\
& =\frac{22}{2} \mathrm{~cm}=11 \mathrm{~cm} \\
\text { Circumference of bucket } & =2 \pi r=2 \times \frac{22}{7} \times 11 \\
\text { Depth } & =9.68 \mathrm{~m} \\
& =\frac{968}{100} \times 100 \mathrm{~cm}=968 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Number of turns } & =\frac{968}{2 \times \frac{22}{7} \times 11} \\
& =\frac{968 \times 7}{2 \times 22 \times 11}=\mathbf{1 4}
\end{aligned}
$$

2. Exponents and Radicals

EXERCISE 2.1

1. $\left(\right.$ i) $(16)^{\frac{1}{2}}=\sqrt{\mathbf{1 6}}$
(iii) $\left(\frac{6}{17}\right)^{\frac{1}{9}}=\sqrt[9]{\frac{6}{17}}$
(ii) $(125)^{\frac{1}{3}}=\sqrt[3]{\mathbf{1 2 5}}$
(iv) $\left(\frac{11}{17}\right)^{\frac{1}{11}}=\sqrt[11]{\frac{\mathbf{1 1}}{\mathbf{1 7}}}$
(v) $\left(\frac{61}{325}\right)^{\frac{1}{17}}=\sqrt[17]{\frac{\mathbf{6 1}}{\mathbf{3 2 5}}}$
2. (i) $\sqrt{5}=(5)^{\frac{\mathbf{1}}{\mathbf{2}}}$
(ii) Do yourself
(iii) $\sqrt[9]{1100}=(\mathbf{1 1 0 0})^{\frac{\mathbf{1}}{\mathbf{9}}}$
(iv) $\sqrt[4]{\frac{3}{4}}=\left(\frac{\mathbf{3}}{\mathbf{4}}\right)^{\frac{\mathbf{1}}{4}}$
(v) $\sqrt[8]{\frac{61}{1123}}=\left(\frac{\mathbf{6 1}}{\mathbf{1 1 2 3}}\right)^{\frac{\mathbf{1}}{\mathbf{8}}}$

EXERCISE 2.2

1. (i) $(8)^{\frac{1}{3}}=\left(2^{3}\right)^{\frac{1}{3}}=2^{3 \times \frac{1}{3}}=\mathbf{2}$
(ii) $(27)^{\frac{2}{3}}=\left(3^{3}\right)^{\frac{2}{3}}=3^{3 \times \frac{2}{3}}=3^{2}=\mathbf{9}$
(iii) Do yourself.
(iv) $(16)^{-\frac{3}{4}}=\left(2^{4}\right)^{\frac{-3}{4}}=2^{4 \times \frac{-3}{4}}=2^{-3}=\frac{\mathbf{1}}{\mathbf{8}}$
(v) Do yourself.
(vi) (4) $)^{\frac{-5}{2}}=(2)^{2 \times\left(\frac{-5}{2}\right)}=2^{-5}=\frac{1}{2^{5}}=\frac{\mathbf{1}}{\mathbf{3 2}}$
(vii), (viii) Do yourself.
(ix) $(243)^{\frac{2}{5}}=\left(3^{5}\right)^{\frac{2}{5}}=3^{5 \times \frac{2}{5}}=3^{2}=\mathbf{9}$

3	243
3	81
3	27
3	9
3	3
	1

$$
\begin{aligned}
(\mathrm{x})(512)^{\frac{-2}{9}} & =\left(2^{9}\right)^{\frac{-2}{9}} \\
& =2^{9 \times \frac{-2}{9}} \\
& =2^{-2} \\
& =\frac{1}{2^{2}} \\
& =\frac{\mathbf{1}}{\mathbf{4}}
\end{aligned}
$$

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

EXERCISE 2.3

2. $\left(\right.$ i) $(5)^{\frac{1}{4}}=\sqrt[4]{5}$
(iii) Do yourself.
(v) Do yourself.
3. (i) $\sqrt[4]{37}=(\mathbf{3 7})^{\frac{\mathbf{1}}{4}}$
(iii) $\sqrt[7]{29^{2}}=(29)^{\frac{2}{7}}$
(vi) $\sqrt[3]{2^{-6}}=(2)^{\frac{-6}{3}}=\mathbf{2}^{-2}$
4. (i) $(32)^{\frac{1}{5}}=2^{5 \times \frac{1}{5}}=\mathbf{2}$

2	32
2	16
2	8
2	4
2	2
	1

(ii) $21^{\frac{2}{3}}=\sqrt[3]{\mathbf{2 1}^{\mathbf{2}}}$
(iv) $\left(\frac{5}{17}\right)^{\frac{1}{9}}=\sqrt[9]{\frac{5}{17}}$
(vi) $(-215)^{\frac{1}{7}}=\sqrt[7]{-\mathbf{2 1 5}}$
(ii) Do yourself.
(iv), (v) Do yourself.
(ii) $\frac{4}{36^{\frac{-1}{2}}}=\frac{4}{\left(2^{2}\right)^{\frac{-1}{2}}\left(3^{2}\right)^{\frac{-1}{2}}}$

$$
\begin{aligned}
& =\frac{4}{(2)^{2 \times \frac{-1}{2}}(3)^{2 \times \frac{-1}{2}}} \\
& =\frac{4}{(2)^{-1}(3)^{-1}}=\frac{4 \times 2 \times 3}{1}
\end{aligned}
$$

$$
=24
$$

(iii) $(16)^{\frac{-3}{4}}=\frac{1}{(16)^{\frac{3}{4}}}=\frac{1}{2^{4 \times \frac{3}{4}}}=\frac{1}{2^{3}}=\frac{\mathbf{1}}{\mathbf{8}}$
5. (i) $13^{\frac{4}{3}} \div 13^{\frac{1}{3}}=13^{\frac{4}{3}-\frac{1}{3}}=13^{\frac{3}{3}}=\mathbf{1 3}$
(ii) Do yourself.
(iii) $(110)^{\frac{1}{2} \times 4}=(110)^{2}=\mathbf{1 2 1 0 0}$
(iv) $\left(5^{10}\right)^{0}=\mathbf{1}$
6. (i) $7^{\frac{1}{2}} \times 7^{\frac{3}{2}}=7^{\frac{1}{2}+\frac{3}{2}}=7^{\frac{4}{2}}=7^{2}=\mathbf{4 9}$
(ii) Do yourself.
(iii) $2 \times 9^{\frac{3}{2}} \times 9^{\frac{-1}{2}}=2 \times 9^{\frac{3}{2}-\frac{1}{2}}=2 \times 9^{\frac{3-1}{2}}=2 \times 9=\mathbf{1 8}$
(iv) Do yourself.
7. (i) $3 \times 16^{\frac{3}{4}}=3 \times 2^{4 \times \frac{3}{4}}=3 \times 2^{3}=3 \times 8=\mathbf{2 4}$
(ii), (iii) Do yourself.
(iv) $\left[(8)^{\frac{2}{3}}\right]^{\frac{-3}{2}}=8^{\frac{2}{3} \times \frac{-3}{2}}=8^{-1}=\frac{\mathbf{1}}{\mathbf{8}}$
8. (i) $(0.04)^{\frac{3}{2}}=\left(\frac{4}{100}\right)^{\frac{3}{2}}=\left(\frac{2}{10}\right)^{2 \times \frac{3}{2}}=\frac{8}{1000}=\mathbf{0 . 0 0 8}$
(ii) Do yourself.
(iii) $(0.000064)^{\frac{5}{6}}=\left(\frac{64}{1000000}\right)^{\frac{5}{6}}=\left(\frac{2}{10}\right)^{6 \times \frac{5}{6}}=\left(\frac{2}{10}\right)^{5}$

$$
=\frac{32}{100000}=\mathbf{0 . 0 0 0 3 2}
$$

(iv) $(6.25)^{\frac{3}{2}}=\left(\frac{625}{100}\right)^{\frac{3}{2}}=\left(\frac{25}{10}\right)^{2 \times \frac{3}{2}}$

$$
=\left(\frac{25}{10}\right)^{3}=\frac{25 \times 25 \times 25}{10 \times 10 \times 10}=\frac{15625}{1000}=\mathbf{1 5 . 6 2 5}
$$

9. (i) $64^{\frac{1}{2}} \times\left(64^{\frac{1}{2}}+1\right)=8^{2 \times \frac{1}{2}} \times\left(8^{2 \times \frac{1}{2}}+1\right)$
$=8 \times(8+1)=8 \times 9=72$
(ii) $27^{\frac{-1}{3}} \times\left(27^{\frac{1}{3}}-27^{\frac{2}{3}}\right)=27^{\frac{-1}{3}} \times\left(3 \times \frac{\frac{1}{3}}{3}-3^{3 \times \frac{-1}{3}}\right)$

$$
\begin{aligned}
& =3^{3 \times \frac{-1}{3}} \times\left(3^{3 \times \frac{1}{3}}-3^{3 \times \frac{2}{3}}\right) \\
& =3^{-1} \times\left(3-3^{2}\right) \\
& =\frac{1}{3} \times(3-9)=\frac{-6}{3}=-\mathbf{2}
\end{aligned}
$$

(iii) Do yourself.
(iv) $\frac{(36)^{\frac{7}{2}}-(36)^{\frac{9}{2}}}{(36)^{\frac{5}{2}}}=\frac{\left(6^{2}\right)^{\frac{7}{2}}-\left(6^{2}\right)^{\frac{9}{2}}}{\left(6^{2}\right)^{\frac{5}{2}}}=\frac{6^{7}-6^{9}}{6^{5}}=\frac{6^{7}}{6^{5}}-\frac{6^{9}}{6^{5}}$

$$
=6^{7-5}-6^{9-5}=6^{2}-6^{4}
$$

$$
=36-1296=-\mathbf{1 2 6 0}
$$

10.

(i) $\left(x^{-4}\right)^{3}=x^{-4 \times 3}=x^{-12}=\frac{\mathbf{1}}{\boldsymbol{x}^{12}}$
(ii) $2 x^{\frac{1}{6}} \times 2 x^{\frac{-7}{6}}=4 x^{\frac{1}{6}-\frac{7}{6}}=4 x^{-1}=\frac{\boldsymbol{4}}{\boldsymbol{x}}$
(iii) $x^{-7} \times y^{-7}=(x y)^{-7}=\frac{1}{(x y)^{7}}=\frac{\mathbf{1}}{\boldsymbol{x}^{7} \boldsymbol{y}^{7}}$
(iv) $x^{\frac{5}{7}} \div x^{\frac{12}{7}}=x^{\frac{5}{7}-\frac{12}{7}}=x^{\frac{-7}{7}}=x^{-1}=\frac{\mathbf{1}}{\boldsymbol{x}}$
11. (i) $\left(3^{2}+4^{2}\right)^{\frac{1}{2}}=(9+16)^{\frac{1}{2}}=(25)^{\frac{1}{2}}=5^{2 \times \frac{1}{2}}=\mathbf{5}$
(ii), (iii) Do yourself.
(iv) $\left(1^{3}+2^{3}+3^{3}\right)^{\frac{1}{2}}=(1+8+27)^{\frac{1}{2}}=(36)^{\frac{1}{2}}=6^{2 \times \frac{1}{2}}=\mathbf{6}$

3. Squares and Square Roots

EXERCISE 3.1

5. (i) $65^{2}=65 \times 65=4225$
(ii) $75^{2}=75 \times 75=\mathbf{5 6 2 5}$
6. (i) $23^{2}-22^{2}=(23+22)(23-22)=45 \times 1=\mathbf{4 5}$
(ii) $101^{2}-100^{2}=(101+100)(101-100)=201 \times 1=\mathbf{2 0 1}$
(iii) Do yourself.
7. Do yourself.
8. (iv) $4^{2}+5^{2}+20^{2}=21^{2}$
(v) $5^{2}+6^{2}+30^{2}=31^{2}$
(vi) $6^{2}+7^{2}+42^{2}=43^{2}$

EXERCISE 3.2

1. (i) 25

Now $25-1=24,24-3=21,21-5=16,16-7=9,9-9=0$,
Since, we had to subtract 5 times. $\therefore \sqrt{\mathbf{2 5}}=\mathbf{5}$
(ii) 64

Now $64-1=63,63-3=60,60-5=55,55-7=48$,

$$
48-9=39,39-11=28,28-13=15,15-15=0
$$

Since, we had to subtract 8 times $\quad \therefore \sqrt{\mathbf{6 4}}=\mathbf{8}$
(iii), (iv), (v) Do yourself.
(vi) 225

Now $225-1=224,224-3=221,221-5=216$, $216-7=209,209-9=200,200-11=189,189-13=176$, $176-15=161,161-17=144,144-19=125,125-21=104$, $104-23=81,81-25=56,56-27=29,29-29=0$
Since, we had to subtract 15 times. $\therefore \sqrt{\mathbf{2 2 5}}=\mathbf{1 5}$
(vii) Do yourself.
(viii) $4900=49 \times 100$

Now $49-1=48,48-3=45,45-5=40,40-7=33$,
$33-9=24,24-11=13,13-13=0$
Since, we had to subtract 7 times and
Now $100-1=99,99-3=96,96-5=91,91-7=84$, $84-9=75,75-11=64,64-13=51,51-15=36$, $36-17=19,19-19=0$
Since, we had to sabtract 10 times.
$\sqrt{49}=7$ and $\sqrt{100}=10, \sqrt{4900}=7 \times 10=\mathbf{7 0}$
(ix) and (x) Do yourself.
2. (i) Factorizing 16 by the division method

$$
\Rightarrow \quad \begin{array}{rl}
16 & =2 \times 2 \times 2 \times 2 \\
\sqrt{16} & =2 \times 2 \\
& =4 \\
2 & 16 \\
\hline 2 & 8 \\
\hline 2 & 4 \\
\hline 2 & 2 \\
\hline & 1
\end{array}
$$

(ii) Do yourself.
(iii) Factorizing 529 by the division method.

$$
\begin{aligned}
529 & =23 \times 23 \\
\sqrt{529} & =\mathbf{2 3}
\end{aligned}
$$

23	529
23	23
	1

(iv) Do yourself.
(v) Factorizing 1764 by the division method

$$
\begin{aligned}
1764 & =2 \times 2 \times 3 \times 3 \times 7 \times 7 \\
\sqrt{1764} & =2 \times 3 \times 7 \\
& =42
\end{aligned}
$$

(vi) Do yourself.

2	1764
2	882
3	441
3	147
7	49
7	7
	1

(vii) Factorizing 7744 by the division method.

$$
\begin{aligned}
7744 & =2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11 \times 11 \\
\sqrt{7744} & =2 \times 2 \times 2 \times 11 \\
& =\mathbf{8 8}
\end{aligned}
$$

(viii), (ix) Do yourself.

2	7744
2	3872
2	1936
2	968
2	484
2	242
11	121
11	11
	1

(x) Factorizing 298116 by the division method

$$
\begin{aligned}
298116 & =2 \times 2 \times 3 \times 3 \times 7 \times 7 \times 13 \times 13 \\
\sqrt{298116} & =2 \times 3 \times 7 \times 13 \\
& =\mathbf{5 4 6}
\end{aligned}
$$

3. By prime factorization, we get

2	298116
2	149058
3	74529
3	24843
7	8281
7	1183
13	169
13	13
	1

$$
9408=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7
$$

To be a perfect square, it should be having pairs of prime factors therefore, division by 3 is necessary.

$$
\text { Thus, } \quad \begin{aligned}
\frac{9408}{3} & =\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7}{3} \\
& =2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7 \\
& =2 \times 2 \times 2 \times 7 \\
& =\mathbf{5 6}
\end{aligned}
$$

4. Proceed as question 2.

2	9408
2	4704
2	2352
2	1176
2	588
2	294
3	147
7	49
7	7
	1

5. Let there be x students in the school
$\therefore \quad$ Number of student in the school $=x$
Fee paid by the x student $=x \times x=x^{2}$
The total collection of fee $=2304$

$$
\therefore \quad \begin{aligned}
x^{2} & =2304 \\
x & =\sqrt{2304} \\
x & =\sqrt{2 \times 2 \times 3 \times 3} \\
x & =2 \times 2 \times 2 \times 2 \times 3=\mathbf{4 8}
\end{aligned}
$$

2	2304
2	1152
2	576
2	288
2	144
2	72
2	36
2	18
3	9
3	3
	1

6. Do yourself.

EXERCISE 3.3

1. (i) $\sqrt{\frac{625}{1296}}=\sqrt{\frac{5 \times 5 \times 5 \times 5}{6 \times 6 \times 6 \times 6}}=\frac{5 \times 5}{6 \times 6}=\frac{\mathbf{2 5}}{\mathbf{3 6}}$
(ii) $\sqrt{4 \frac{29}{49}}=\sqrt{\frac{225}{49}}=\sqrt{\frac{3 \times 3 \times 5 \times 5}{7 \times 7}}=\frac{3 \times 5}{7}=\frac{15}{7}=\mathbf{2} \frac{\mathbf{1}}{7}$
(iii), (iv), (v), (vi) Do yourself.
(vii) $\sqrt{5.774409}=\sqrt{\frac{5774409}{1000000}}$

$$
\begin{aligned}
& =\sqrt{\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 89 \times 89}{10 \times 10 \times 10 \times 10 \times 10 \times 10}} \\
& =\frac{3 \times 3 \times 3 \times 89}{10 \times 10 \times 10} \\
& =\frac{2403}{1000}=\mathbf{2 . 4 0 3}
\end{aligned}
$$

(viii), (ix), (x), (xi) Do yourself.
(xii) $\sqrt{0.09}=\sqrt{\frac{9}{100}}=\sqrt{\frac{3 \times 3}{10 \times 10}}=\frac{3}{10}=\mathbf{0 . 3}$
(xiii), (xiv) Do yourself.
(xv) $\sqrt{\frac{121}{1000}}=\sqrt{\frac{11 \times 11}{10 \times 10 \times 10 \times 10}}=\frac{11}{10 \times 10}=\frac{11}{100}$
(xvi), (xvii) Do yourself.
2. Area of a square field $=101 \frac{1}{400} \mathrm{~m}^{2}$

$$
\text { Then } \begin{aligned}
& =(\mathrm{Arm})^{2} \\
(\mathrm{Arm})^{2} & =101 \frac{1}{400} \\
\text { Arm } & =\sqrt{101 \frac{1}{400}} \\
& =\sqrt{\frac{40401}{400}} \\
& =\sqrt{\frac{201}{20}}=\mathbf{1 0} \frac{\mathbf{1}}{\mathbf{2 0}}
\end{aligned}
$$

EXERCISE 3.4

1. $\sqrt{2304}=48$

4	$\mathbf{2} \quad 8$
	$\overline{23} \overline{04}$
	16
88	704
	704
	0

2., 3., 4., 5., 6., 7. and 8. Do yourself.
9. $\sqrt{99856}=\mathbf{3 1 6}$

	316
3	$\overline{9} \overline{98} \overline{56}$
	9

10., 11., 12., 13. Do yourself.
14. $\sqrt{4937284}=\mathbf{2 2 2 2}$

	2222
2	$\overline{4} \overline{93} \overline{72} \overline{84}$
	4
42	93
	84
442	972
	884
4442	8884
	8884
	0

15., 16., 17., 18., 19., 20. Do yourself.
20. $\sqrt{3226694416}=\mathbf{5 6 8 0 4}$

21., 22., 23., 24., 25. Do yourself.
26. The greatest number of six digits is 999999 .

	999
9	$\overline{99} \overline{99} \overline{99}$
	81
189	1899
	1701
1989	19899
	17901
	1998

We subtract 1998 from 999999 to make it a perfect square.
$\therefore \quad$ Required number $=999999-1998=\mathbf{9 9 8 0 0 1}$
27. Total soldiers $=8160$

Remaining soldiers $=60$
Soldiers which are perfect square $=8160-60=8100$
Let the x soldiers in one row and x rows in a field then,

$$
\begin{aligned}
x^{2} & =8100 \\
x & =\sqrt{8100}=\sqrt{9 \times 9 \times 10 \times 10}=\mathbf{9 0} \text { soldiers }
\end{aligned}
$$

EXERCISE 3.5

1. $\sqrt{\frac{361}{625}}=\sqrt{\frac{361}{625}}=\frac{\sqrt{19 \times 19}}{\sqrt{25 \times 25}}=\frac{19}{25}$
2. $\sqrt{5 \frac{19}{25}}=\sqrt{\frac{144}{25}}=\frac{\sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3}}{\sqrt{5 \times 5}}=\frac{12}{5}=2 \frac{2}{5}$
3., 4., 5., 6., 7. Do yourself.
3. $\sqrt{332 \frac{61}{169}}=\frac{\sqrt{56169}}{\sqrt{169}}=\frac{237}{13}=18 \frac{3}{13}$

237	
2	$\overline{5} \overline{61} \overline{69}$
	4
43	161
	129
467	3269
	3269
	\times

9. $\sqrt{7.29}=\frac{\sqrt{729}}{\sqrt{100}}$

	27
2	$\overline{7} \overline{29}$
	4
47	329
	329
	\times

10., 11., 12., 13., 14., 15. Do yourself.
16. $\sqrt{0.00008281}=\frac{\sqrt{8281}}{\sqrt{100000000}}$

$$
\begin{aligned}
& =\frac{91}{10000} \\
& =\mathbf{0 . 0 0 9 1}
\end{aligned}
$$

91	
9	$\overline{82} \overline{81}$
	81
181	181
	181
	\times

17. Let the number be x

$$
\begin{aligned}
x \times x & =251953.8025 \\
x^{2} & =251953.8025 \\
x & =\frac{\sqrt{2519538025}}{\sqrt{10000}} \\
x & =\frac{50195}{100} \\
& =\mathbf{5 0 1 . 9 5}
\end{aligned}
$$

50195	
5	$\overline{25} \overline{19} \overline{53} \overline{80} \overline{25}$
	25
1001	1953
	1001
10029	95280
	90261
100385	501925
	501925
	\times

18. Do yourself.
19. Area of playground $=(\text { side })^{2}$

$$
\begin{aligned}
256.6404 & =a^{2} \\
a & =\sqrt{256.6404} \\
a & =\frac{\sqrt{2566404}}{\sqrt{10000}}=\frac{1602}{100} \\
& =\mathbf{1 6 . 0 2 ~ m}
\end{aligned}
$$

1602	
1	$\overline{2} \overline{56} \overline{64} \overline{04}$
	1
26	156
	156
3202	6404
	6404
	\times

EXERCISE 3.6

1. $\sqrt{1.7}=1.3038$ up to four places of decimal
$=1.304$ Correct upto three places of decimal.

1.3038	
1	$\overline{1} . \overline{70} \overline{00} \overline{00} \overline{00}$
	1
23	70
	69
2603	10000
	7809
26068	219100
	208544
	10556

2., 3. Do yourself.
4.

$$
\begin{aligned}
\sqrt{237.615} & =\frac{\sqrt{2376150}}{\sqrt{10000}} \\
& =\frac{1541.47}{100} \\
& =15.4147 \\
& =\mathbf{1 5 . 4 1 5}
\end{aligned}
$$

Correct upto three places of decimal.

1541.47	
1	$\overline{2} \overline{37} \overline{61} \overline{50}$
	1
25	137
	125
304	1261
	1216
3081	4550
	3081
30824	146900
	123296
308287	2360400
	2158009
	202391

5., 6., 7., 8., 9., 10. Do yourself.
11. $\sqrt{\frac{7}{8}}=\sqrt{0.875}$

93.54	
9	$\overline{87} \overline{50}$
	81
183	650
	549
1865	10100
	9325
18704	77500
	74816
	2684

12., 13., 14., 15., 16. Do yourself.
17.

3. 31662	
3	$\begin{aligned} & \overline{11 .} \overline{00} \overline{00} \overline{00} \overline{00} \\ & 9 \end{aligned}$
63	$\begin{aligned} & 200 \\ & 189 \end{aligned}$
661	$\begin{array}{r} 1100 \\ 661 \end{array}$
6626	$\begin{aligned} & 43900 \\ & 39756 \end{aligned}$
66326	$\begin{aligned} & 414400 \\ & 397956 \end{aligned}$
663322	$\begin{aligned} & 1644400 \\ & 1326644 \end{aligned}$
	$\begin{aligned} & 317756 \\ & =3.31662 \end{aligned}$

Let's Recall

2. (b) $\sqrt{2401}=\sqrt{7^{x}}$

$$
\begin{aligned}
\sqrt{7^{4}} & =\sqrt{7^{x}} \\
\left(7^{4}\right)^{\frac{1}{2}} & =\left(7^{x}\right)^{\frac{1}{2}} \\
7^{4} & =7^{x} \text { Comparing of power } \\
x & =4 .
\end{aligned}
$$

So, option (b) is right.

EXERCISE 4.1

1. (i) $7^{3}=7 \times 7 \times 7$

$$
=\mathbf{3 4 3}
$$

(ii) $12^{3}=12 \times 12 \times 12$

$$
\text { = } 1728
$$

(iii) $21^{3}=21 \times 21 \times 21$

$$
=9261
$$

(iv) $100^{3}=100 \times 100 \times 100$
$=\mathbf{1 0 0 0 0 0 0}$
(v) $(302)^{3}=302 \times 302 \times 302$
$=27543608$
2.

$$
\begin{aligned}
& 1^{3}=1 \times 1 \times 1=1 \\
& 2^{3}=2 \times 2 \times 2=8 \\
& 3^{3}=3 \times 3 \times 3=27 \\
& 4^{3}=4 \times 4 \times 4=64 \\
& 5^{3}=5 \times 5 \times 5=125 \\
& 6^{3}=6 \times 6 \times 6=216 \\
& 7^{3}=7 \times 7 \times 7=343 \\
& 8^{3}=8 \times 8 \times 8=512 \\
& 9^{3}=9 \times 9 \times 9=729 \\
& 10^{3}=10 \times 10 \times 10=1000 \\
& 11^{3}=11 \times 11 \times 11=1331 \\
& 12^{3}=12 \times 12 \times 12=1728 \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
& 19^{3}=19 \times 19 \times 19=6859
\end{aligned}
$$

Here, odd numbers are $1,3,5,7,9,11, \ldots \ldots .19$ and their cubes are $1,27,125,343,729,1331, \ldots \ldots .6859$ which are also odd numbers. And, even numbers are $2,4,6,8,10,12, \ldots \ldots$. and their cubes are $8,64,216,512,1000,1728, \ldots \ldots$. which are also even numbers.
3. Do yourself.
4. $3^{3}=3 \times 3 \times 3=27$,

$$
\begin{aligned}
6^{3} & =6 \times 6 \times 6=216 \\
9^{3} & =9 \times 9 \times 9=729 \\
12^{3} & =12 \times 12 \times 12=1728 \\
15^{3} & =15 \times 15 \times 15=3375
\end{aligned}
$$

$27,216,729,1728$ and 3375 are the multiples of 27.
5. Do yourself.
6.

2	64
2	32
2	16
2	8
2	4
2	2
	1

2	216
2	108
2	54
3	27
3	9
3	3
	1

3	243
3	81
3	27
3	9
3	3
	1

$\sqrt[3]{64}=2 \times 2=4, \sqrt[3]{216}=2 \times 3=6, \sqrt[3]{1728}=2 \times 2 \times 3=12^{3}$ are perfect cubes.
243, 106480 are not perfect cubes.
7. Resolving 392 in to prime factors, we have $392=2 \times 2 \times 2 \times 7 \times 7$
Grouping the factors in triplets of equal factors we get
$392=\underline{2 \times 2 \times 2} \times 7 \times 7$
Clearly, to make it a perfect cube, it must be multiplied by 7 .

2	392
2	196
2	98
7	49
7	7
	1

8. Volume of cube $=(\text { side })^{3}=13^{3}=13 \times 13 \times 13=\mathbf{2 1 9 7} \mathbf{m}^{\mathbf{3}}$
9. Do yourself.

EXERCISE 4.2

1. (i)

7	343
7	49
7	7
	1

$$
\sqrt[3]{343}=7
$$

(ii) Do yourself.
(iii)

2	2744
2	1372
2	686
7	343
7	49
7	7
	1

$$
\sqrt[3]{2744}=2 \times 7=\mathbf{1 4}
$$

(iv) and (v) Do yourself.
(vi)

2	134217728
2	67108864
2	33554432
2	16777216
2	8388608
2	4194304
2	2097152
2	1048576
2	524288
2	262144
2	131072
2	65536
2	32768
2	16384
2	8192
2	4096
2	2048
2	1024
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1
2	2

$\sqrt[3]{134217728}=2 \times 2 \times 2=\mathbf{5 1 2}$ (vii), (viii) Do yourself.
2. Do yourself.
3. $137592=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7 \times 13$

To make it a perfect cube it must be multiplied by

$$
13 \times 13 \times 7=\mathbf{1 1 8 3}
$$

The cube root of product $=2 \times 3 \times 7 \times 13=\mathbf{5 4 6}$

2	137592
2	68796
2	34398
3	17199
3	5733
3	1911
7	637
7	91
13	13
	1

4. $26244=2 \times 2 \times 3 \times 3 \times 9 \times 9 \times 9$

To make it a perfect cube it must be divided by $2 \times 2 \times 3 \times 3$ = 36
The cube root of product $=9$

2	26244
2	13122
3	6561
3	2187
9	729
9	81
9	9
	1

5. Volume of cube $=(\text { side })^{3}$

$$
\begin{aligned}
\sqrt[3]{512} & =\text { side } \\
\text { Side } & =\mathbf{8} \mathbf{m}
\end{aligned}
$$

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

EXERCISE 4.3

1. (i) $\sqrt[3]{-125}=-\sqrt[3]{125}=-\sqrt[3]{5 \times 5 \times 5}=-5$,
(ii) and (iii) Do yourself.
(iv) $\sqrt[3]{-2744000}=-\sqrt[3]{2744000}$

$$
\begin{aligned}
& =-\sqrt[3]{2 \times 2 \times 2 \times 7 \times 7 \times 7 \times 10 \times 10 \times 10} \\
& =-2 \times 7 \times 10=-\mathbf{1 4 0}
\end{aligned}
$$

2	2744000
2	1372000
2	686000
7	343000
7	49000
7	7000
10	1000
10	100
10	10
	1

EXERCISE 4.4

1. $\sqrt[3]{8 \times 64}=\sqrt[3]{2 \times 2 \times 2}=2 \times 2 \times 2=8$

2	64
2	32
2	16
2	8
2	4
2	2
	1

2	8
2	4
2	2
	1

2. $\sqrt[3]{(-216) \times 1728}$

$$
\begin{aligned}
& =-\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3} \\
& =-2 \times 3 \times 2 \times 2 \times 3=-8 \times 9=-\mathbf{7 2}
\end{aligned}
$$

2	216
2	108
2	54
3	27
3	9
3	3
	1

2	1728
2	864
2	432
2	216
2	108
2	54
3	27

3	9
3	3
	1

3. Do yourself.
4. $\sqrt[3]{(-125) \times(-3375)}=-\sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 3 \times 3 \times 3}$

$$
=5 \times 5 \times 3=75
$$

5	125
5	25
5	5
	1

3	3375
3	1125
3	375
5	125
5	25
5	5
	1

5., 6., 7. Do yourself.
8. $\sqrt[3]{-5832000}=\sqrt[3]{5832000}$
$=-\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$
$=-2 \times 2 \times 3 \times 3 \times 5$
$=-4 \times 9 \times 5=\mathbf{- 1 8 0}$

2	5832000
2	2916000
2	1458000
2	729000
2	364500
2	182250
3	91125
3	30375
3	10125
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

EXERCISE 4.5

1. (i) $(0.3)^{3}=0.3=\frac{3 \times 3 \times 3}{1000}=\frac{27}{1000}=0.027$
(ii) Do yourself.
(iii) $(0.08)^{3}=0.08 \times 0.08 \times 0.08=\frac{8 \times 8 \times 8}{100 \times 100 \times 100}$

$$
=\frac{512}{1000000}=\mathbf{0 . 0 0 0 5 1 2}
$$

(iv) Do yourself.
2. (i) $\left(\frac{7}{9}\right)^{3}=\frac{7 \times 7 \times 7}{9 \times 9 \times 9}=\frac{\mathbf{3 4 3}}{\mathbf{7 2 9}}$
(ii) $\left(\frac{-8}{11}\right)^{3}=\frac{-8 \times-8 \times-8}{11 \times 11 \times 11}=\frac{-\mathbf{5 1 2}}{\mathbf{1 3 3 1}}$
(iii) and (iv) Do yourself.
(v) $\left(2 \frac{3}{5}\right)^{3}=\left(\frac{13}{5}\right)^{3}=\frac{13 \times 13 \times 13}{5 \times 5 \times 5}=\frac{\mathbf{2 1 9 7}}{\mathbf{1 2 5}}$
(vi) Do yourself.
3. (i) $\sqrt[3]{\frac{27}{64}}=\sqrt[3]{\frac{3 \times 3 \times 3}{4 \times 4 \times 4}}=\frac{\mathbf{3}}{\mathbf{4}}$
(ii) $\sqrt[3]{\frac{125}{128}}=\sqrt[3]{\frac{5 \times 5 \times 5}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}}$

128 is not a perfect cube.

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii), (iv) Do yourself.
4. Volume of box $=(\text { Side })^{3}$

$$
\begin{aligned}
32.768 & =(\text { side })^{3} \\
\sqrt[3]{32.768} & =\text { Side } \\
\sqrt[3]{\frac{32768}{1000}} & =\text { Side }
\end{aligned}
$$

$$
\begin{aligned}
\text { Side } & =\frac{2 \times 2 \times 2 \times 2 \times 2}{10} \\
& =\frac{32}{10}=\mathbf{3 . 2} \mathbf{~ m}
\end{aligned}
$$

2	32768
2	16384
2	8192
2	4096
2	2048
2	1024
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

5. (i) $\sqrt[3]{\frac{8}{125}}=\sqrt[3]{\frac{2 \times 2 \times 2}{5 \times 5 \times 5}}=\frac{\mathbf{2}}{\mathbf{5}}$
(ii) $\sqrt[3]{\frac{-64}{1331}}=-\sqrt[3]{\frac{4 \times 4 \times 4}{11 \times 11 \times 11}}=-\frac{\mathbf{4}}{\mathbf{1 1}}$
(iii) Do yourself.
(iv) $\sqrt[3]{\frac{-2197}{-9261}}=\sqrt[3]{\frac{2197}{9261}}=\sqrt[3]{\frac{13 \times 13 \times 13}{21 \times 21 \times 21}}=\frac{\mathbf{1 3}}{\mathbf{2 1}}$
6.

Playing with Numbers

EXERCISE 5.1

1. Let the number be, $10 a+b$

Where, a is the tens digit and b is the units digit
Now, according to question,
Units digit $=5$
and

$$
b=5
$$

$$
\begin{aligned}
a+b & =(10 a+b) \times \frac{1}{5} \\
5 a+5 b & =10 a+b \\
10 a+b-5 a-5 b & =0 \\
5 a-4 b & =0 \\
5 a & =4 b \text { Putting the value of } b \\
5 a & =4 \times 5 \\
5 a & =20 \\
a & =4
\end{aligned}
$$

[Putting the values of a and b]
Hence, the number is $10 a+b=10 \times 4+5=40+5=45$
2. Let the number be $10 a+b$

Where, a is the tens digit and b is the units digit.
Now, According to question,

$$
\begin{aligned}
(10 a+b)-(10 b+a) & =72 \\
10 a+b-10 b-a & =72 \\
10 a-10 b-a+b & =72 \\
(a-b)[10-1] & =72 \\
(a-b) \times 9 & =72 \\
a-b & =\frac{72}{9} \\
a-b & =\mathbf{8}
\end{aligned}
$$

Thus, difference between the two digit number is $\mathbf{8}$.
3. Let the number be $10 a+b$

Where, a is the tens digit and b is the units digit
Now, According to question,

$$
10 a+b=(a+b)+27
$$

$$
10 a+b-a-b=27
$$

$$
9 a=27
$$

$$
a=3
$$

But

$$
b=2 a
$$

Given in question
Then,

$$
\begin{aligned}
& b=2 \times 3 \\
& b=6
\end{aligned}
$$

Hence, the number is, $10 a+b$

$$
\begin{aligned}
& =10 \times 3+6 \\
& =30+6 \\
& =\mathbf{3 6}
\end{aligned}
$$

4. Do yourself.
5. Now, According to question,

$$
\begin{aligned}
10 b+a & =(10 a+b) \times \frac{4}{7} \\
70 b+7 a & =40 a+4 b \\
70 b-4 b & =40 a-7 a \\
66 b & =33 a \\
b & =\frac{33}{66} a \\
b & =\frac{1}{2} a \\
\Rightarrow \quad a & =2 b
\end{aligned}
$$

But $a-b=3$, Given in question $b=3$
Then,

$$
a-\frac{a}{2}=3
$$

$$
\frac{2 a-a}{2}=3
$$

$$
\Rightarrow \quad \frac{a}{2}=3
$$

\Rightarrow

$$
a=6
$$

Hence, the number is

$$
\begin{aligned}
\Rightarrow \quad 10 a+b & =10 \times 6+3 \\
& =60+3=63
\end{aligned}
$$

Unit-II : Algebra

6. Algebraic Expression and Their Factorization

EXERCISE 6.1

1. (i) $(x+8)(x-2)=x(x+8)-2(x+8)=x^{2}+8 x-2 x-16$

$$
=x^{2}+6 x-16
$$

(ii), (iii), (iv) Do yourself.
(v) $(y-9)(y-2)=y(y-9)-2(y-9)=y^{2}-9 y-2 y+18$

$$
=y^{2}-11 y+18
$$

$$
\text { (vi) } \begin{aligned}
\left(z^{2}+2\right)\left(z^{2}-3\right) & =\left(z^{2}+2\right) z^{2}+\left(z^{2}+2\right)(-3) \\
& =\boldsymbol{z}^{4}+\mathbf{2} \boldsymbol{z}^{\mathbf{2}}-\mathbf{3 z}^{\mathbf{2}}-\mathbf{6} \\
& =z^{4}-z^{2}-6
\end{aligned}
$$

2. (i) $102 \times 106=(100+2) \times(100+6)$

$$
\begin{aligned}
& =(100+2) \times 100+(100+2) \times 6 \\
& =10000+200+600+12=\mathbf{1 0 8 1 2}
\end{aligned}
$$

(ii) $103 \times 96=(100+3) \times(100-4)$

$$
\begin{aligned}
& =(100+3) \times 100+(100+3) \times(-4) \\
& =10000+300-400-12 \\
& =10300-412=\mathbf{9 8 8 8}
\end{aligned}
$$

(iii) $95 \times 97=(100-5)(100-3)$

$$
=(100-5) \times 100+(100-5) \times(-3)=\mathbf{9 2 1 5}
$$

(iv) Do yourself.
(v) $34 \times 36=(30+4) \times(30+6)=(30+4) \times 30+(30+4) \times 6$

$$
=900+120+180+24=\mathbf{1 2 2 4}
$$

(vi) Do yourself.

EXERCISE 6.2

1. (i) $(x+2 y+3 z)^{2}$

$$
\begin{aligned}
& =(x)^{2}+(2 y)^{2}+(3 z)^{2}+2(x \times 2 y+2 y \times 3 z+3 z \times x) \\
& =\boldsymbol{x}^{\mathbf{2}}+\mathbf{4} \boldsymbol{y}^{\mathbf{2}}+\mathbf{9} \boldsymbol{z}^{\mathbf{2}}+\mathbf{4 x y}+\mathbf{1 2} \boldsymbol{y} \boldsymbol{z}+\mathbf{6 z x}
\end{aligned}
$$

(ii) $(x+y-2 z)^{2}$

$$
\begin{aligned}
& =(x)^{2}+(y)^{2}+(-2 z)^{2}+2\{x \times y+y \times(-2 z)+(-2 z) \times x\} \\
& =\boldsymbol{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}+\mathbf{4 z}^{\mathbf{2}}+\mathbf{2 x} \boldsymbol{x} \mathbf{y}-\mathbf{4} \boldsymbol{y z}-\mathbf{4 z \boldsymbol { x }}
\end{aligned}
$$

(iii) Do yourself.
(iv) $(p-3 q-2 z)^{2}$

$$
\begin{gathered}
=(p)^{2}+(-3 q)^{2}+(-2 z)^{2}+2\{p \times(-3 q)+(-3 q) \\
=\boldsymbol{p}^{\mathbf{2}}+\mathbf{9} \boldsymbol{q}^{\mathbf{2}}+\mathbf{4} \mathbf{z}^{\mathbf{2}}-\mathbf{6} \boldsymbol{p} \boldsymbol{q}+\mathbf{1 2} \boldsymbol{q} \boldsymbol{z}-\mathbf{4} \boldsymbol{p} \boldsymbol{z}
\end{gathered}
$$

(v), (vi), (vii) Do yourself.
(viii) $\left(3 x-\frac{1}{2} p+2 q\right)^{2}$

$$
\begin{aligned}
=(3 x)^{2}+\left(-\frac{1}{2} p\right)^{2}+(2 q)^{2} & +2\left\{3 x \times\left(\frac{-1}{2} p\right)\right. \\
& \left.+\left(\frac{-p}{2}\right) \times(2 q)+3 x \times 2 q\right\}
\end{aligned}
$$

$$
=9 x^{2}+\frac{p^{2}}{4}+4 q^{2}-3 p x-2 p q+12 x q
$$

(ix) $\left(5 x^{2}+y+z\right)^{2}$

$$
\begin{aligned}
& =\left(5 x^{2}\right)^{2}+(y)^{2}+(z)^{2}+2\left\{5 x^{2} \times y+y \times z+z \times 5 x^{2}\right\} \\
& =\mathbf{2 5} \boldsymbol{x}^{\mathbf{4}}+\mathbf{y}^{\mathbf{2}}+\boldsymbol{z}^{\mathbf{2}}+\mathbf{1 0} \boldsymbol{x}^{\mathbf{2}} \boldsymbol{y}+\mathbf{2 y z}+\mathbf{1 0} \boldsymbol{z} \boldsymbol{x}^{\mathbf{2}}
\end{aligned}
$$

2. Do yourself.
3. (i) $(x+y+z)^{2}+(x+y-z)^{2}$

$$
\begin{aligned}
=(x)^{2}+(y)^{2}+(z)^{2}+2 x y+2 y z & +2 z x+(x)^{2}+(y)^{2}+(-z)^{2} \\
& +2 x y+2 y(-z)+2(-z) \times(x) \\
=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x+ & x^{2}+y^{2}+z^{2} \\
& +2 x y-2 y z-2 z x
\end{aligned}
$$

$=2 \boldsymbol{x}^{2}+2 y^{2}+2 z^{2}+4 x y$
(ii) $(2 x+p-c)^{2}-(2 x-p+c)^{2} \quad \because(a)^{2}-(b)^{2}=(a+b)(a-b)$

$$
\begin{aligned}
& =(2 x+p-c+2 x-p+c)(2 x+p-c-2 x+p-c) \\
& =(4 x)(2 p-2 c)=\mathbf{8} \boldsymbol{p} \boldsymbol{x}-\mathbf{8 c \boldsymbol { c }}
\end{aligned}
$$

EXERCISE 6.3

1. (i) $(3 x-2 y)^{3}=(3 x)^{3}-(2 y)^{3}-3 \times 3 x \times 2 y(3 x-2 y)$

$$
=27 x^{3}-8 y^{3}-54 x^{2} y+36 x y^{2}
$$

(ii) $(x+3 y)^{3}=(x)^{3}+(3 y)^{3}+3 \times x \times(3 y)\{x+3 y\}$

$$
\begin{aligned}
& =x^{3}+27 y^{3}+9 x y(x+3 y) \\
& =\boldsymbol{x}^{\mathbf{3}}+\mathbf{2 7} \boldsymbol{y}^{\mathbf{3}}+\mathbf{9} \boldsymbol{x}^{\mathbf{2}} \boldsymbol{y}+\mathbf{2 7} \boldsymbol{x} \boldsymbol{y}^{\mathbf{2}}
\end{aligned}
$$

(iii), (iv), (v), (vi) Do yourself.

$$
\text { (vii) } \begin{aligned}
\left(\frac{2}{3} x-\frac{5}{3} z\right)^{3} & =\left(\frac{2}{3} x\right)^{3}-\left(\frac{5}{3} z\right)^{3}-3 \times \frac{2}{3} x \times \frac{5}{3} z\left(\frac{2}{3} x-\frac{5}{3} z\right) \\
& =\frac{8}{27} x^{3}-\frac{125}{27} z^{3}-\frac{10 x z}{3}\left(\frac{2}{3} x-\frac{5}{3} z\right) \\
& =\frac{\mathbf{8}}{\mathbf{2 7}} \boldsymbol{x}^{\mathbf{3}}-\frac{\mathbf{1 2 5}}{\mathbf{2 7}} \boldsymbol{z}^{\mathbf{3}}-\frac{\mathbf{2 0}}{\mathbf{9}} \boldsymbol{x}^{\mathbf{2}} \boldsymbol{z}+\frac{\mathbf{5 0}}{\mathbf{9}} \boldsymbol{x} \boldsymbol{z}^{\mathbf{2}}
\end{aligned}
$$

(viii) Do yourself.
2. (i) $3 x+2 y=14$ and $x y=8$

$$
\begin{aligned}
27 x^{3}+8 y^{3} & =(3 x)^{3}+(2 y)^{3} \\
& =(3 x+2 y)^{3}-3 \times 3 x \times 2 y(3 x+2 y) \\
& =(14)^{3}-18 x y \times 14=(14)^{3}-18 \times 8 \times 14 \\
& =14\left\{14^{2}-18 \times 8\right\} \\
& =14\{196-144\}=14 \times 52=\mathbf{7 2 8}
\end{aligned}
$$

(ii) Do yourself.
3. (i) $p^{3}-q^{3}, p-q=-8$ and $p q=-12$

$$
\begin{aligned}
p^{3}-q^{3} & =(p-q)^{3}+3 p q(p-q) \\
& =(-8)^{3}+3 \times(-12) \times(-8) \\
& =-512+288=-\mathbf{2 2 4}
\end{aligned}
$$

(ii) Do yourself.
4. (i) $64 x^{3}-125 z^{3}, 4 x-5 z=16$, and $x z=12$

$$
\begin{aligned}
64 x^{3}-125 z^{3} & =(4 x-5 z)^{3}+3 \times 4 x \times 5 z \times(4 x-5 z) \\
& =(16)^{3}+60 x z \times 16=(16)^{3}+60 \times 12 \times 16 \\
& =16\left\{(16)^{2}+60 \times 12\right\}=16\{256+720\} \\
& =16 \times 976=\mathbf{1 5 6 1 6}
\end{aligned}
$$

(ii) $64 x^{3}-125 z^{3}, 4 x=5 z=16$

$$
\text { and } x z=6=(4 x-5 z)^{3}+3 \times 4 x \times 5 z \times(4 x-5 z)
$$

$$
\begin{aligned}
& =\left(\frac{3}{5}\right)^{3}+60 \times 6 \times \frac{3}{5} \\
& =\frac{3}{5}\left\{\left(\frac{3}{5}\right)^{2}+60 \times 6\right\}=\frac{3}{5}\left\{\frac{9}{25}+360\right\} \\
& =\frac{3 \times 9009}{25 \times 5}=\frac{\mathbf{2 7 0 2 7}}{\mathbf{1 2 5}}
\end{aligned}
$$

5. (i) $(105)^{3}=(100+5)^{3}=(100)^{3}+(5)^{3}+3 \times 100 \times 5(100+5)$

$$
\begin{aligned}
& =1000000+125+1500 \times 105 \\
& =\mathbf{1 1 5 7 6 2 5}
\end{aligned}
$$

(ii) $(99)^{3}=(100-1)^{3}=(100)^{3}-(1)^{3}-3 \times 100 \times 1(100-1)$

$$
\begin{aligned}
& =1000000-1-300 \times 99 \\
& =1000000-1-29700=\mathbf{9 7 0 2 9 9}
\end{aligned}
$$

(iii), (iv), (v) Do yourself.
(vi) $(601)^{3}=(600+1)^{3}$

$$
\begin{aligned}
& =(600)^{3}+(1)^{3}+3 \times 600 \times 1 \times(600+1) \\
& =216000000+1+1800 \times 601 \\
& =216000000+1+1081800=\mathbf{2 1 7 0 8 1 8 0 1}
\end{aligned}
$$

(vii), (viii), (ix) Do yourself.
(x) $(9.9)^{3}=(10-0.1)^{3}$

$$
\begin{aligned}
& =(10)^{3}-(0.1)^{3}-3 \times 10 \times 0.1(10-0.1) \\
& =1000-\frac{1}{1000}-3 \times 9.9=1000-\frac{1}{1000}-\frac{297}{10} \\
& =\frac{1000000-1-29700}{1000}=\frac{970299}{1000}=\mathbf{9 7 0 . 2 9 9}
\end{aligned}
$$

6. (i) $(2 x+3 p)^{3}+(2 x-3 p)^{3}$

$$
\begin{aligned}
& =(2 x+3 p+2 x-3 p)^{3}-3(2 x+3 p)(2 x-3 p) \\
& =(4 x)^{3}-3\left(4 x^{2}-9 p^{2}\right) \times(4 x) \quad(2 x+3 p+2 x-3 p) \\
& =64 x^{3}-12 x\left(4 x^{2}-9 p^{2}\right)=64 x^{3}-48 x^{3}+108 p^{2} x \\
& =\mathbf{1 6} \boldsymbol{x}^{\mathbf{3}}+\mathbf{1 0 8} \boldsymbol{p}^{\mathbf{2}} \boldsymbol{x}
\end{aligned}
$$

(ii) $(x+2 p)^{3}-(x-2 p)^{3}$

$$
\begin{aligned}
& =(x+2 p-x+2 p)^{3}+3(x+2 p)(x-2 p)(x+2 p-x+2 p) \\
& =(4 p)^{3}+3\left(x^{2}-4 p^{2}\right) \times 4 p=4 p\left\{(4 p)^{2}+3\left(x^{2}-4 p^{2}\right)\right\} \\
& =4 p\left\{16 p^{2}+3 x^{2}-12 p^{2}\right\}=4 p\left\{4 p^{2}+3 x^{2}\right\} \\
& =\mathbf{1 6} \boldsymbol{p}^{\mathbf{3}}+\mathbf{1 2} \boldsymbol{p} \boldsymbol{x}^{\mathbf{2}}
\end{aligned}
$$

(iii), (iv) Do yourself.
(v) $\left(\frac{x}{3}+\frac{y}{5}\right)^{3}-\left(\frac{x}{3}-\frac{y}{5}\right)^{3}=\left(\frac{x}{3}+\frac{y}{5}-\frac{x}{3}+\frac{y}{5}\right)^{3}$

$$
+3\left(\frac{x}{3}+\frac{y}{5}\right)\left(\frac{x}{3}-\frac{y}{5}\right)\left(\frac{x}{3}+\frac{y}{5}-\frac{x}{3}+\frac{y}{5}\right)
$$

$$
=\left(\frac{2 y}{5}\right)^{3}+3\left(\frac{x^{2}}{9}-\frac{y^{2}}{25}\right) \times \frac{2 y}{5}
$$

$$
=\left(\frac{2 y}{5}\right)\left\{\left(\frac{2 y}{5}\right)^{2}+3\left(\frac{x^{2}}{9}-\frac{y^{2}}{25}\right)\right\}
$$

$$
=\frac{2 y}{5}\left\{\frac{4 y^{2}}{25}+\frac{x^{2}}{3}-\frac{3 y^{2}}{25}\right\}
$$

$$
=\frac{8 y^{3}}{125}+\frac{2 x^{2} y}{15}-\frac{6 y^{3}}{125}=\frac{\mathbf{2} \boldsymbol{y}^{\mathbf{3}}}{\mathbf{1 2 5}}+\frac{\mathbf{2 \boldsymbol { x } ^ { 2 }} \boldsymbol{y}}{\mathbf{1 5}}
$$

7. Do yourself.

EXERCISE 6.4

1. (i) $(1-x)\left(1+x+x^{2}\right)=(1)^{3}-(x)^{3}=\mathbf{1}-\boldsymbol{x}^{3}$
(ii) $(x+2)\left(x^{2}-2 x+4\right)=(x)^{3}+(2)^{3}=\boldsymbol{x}^{3}+\mathbf{8}$
(iii), (iv) Do yourself.
(v) $(0.9 x+0.7 y)\left(0.81 x^{2}-0.63 x y+0.49 y^{2}\right)$

$$
\begin{aligned}
& =(0.9 x)^{3}+(0.7 y)^{3} \\
& =\mathbf{0 . 7 2 9}^{\mathbf{3}}+\mathbf{0 . 3 4 3 \boldsymbol { y } ^ { 3 }}
\end{aligned}
$$

(vi) $\left(\frac{2 x}{5}-\frac{3 y}{7}\right)\left(\frac{4 x^{2}}{25}+\frac{9 y^{2}}{49}+\frac{6 x y}{35}\right)=\left(\frac{2 x}{5}\right)^{3}-\left(\frac{3 y}{7}\right)^{3}$

$$
=\frac{8 x^{3}}{125}-\frac{27 y^{3}}{343}
$$

2. Do yourself.

EXERCISE 6.5

1. (i) $x^{2}+9 x+20=x^{2}+(5+4) x+20=x^{2}+5 x+4 x+20$

$$
=x(x+5)+4(x+5)=(\boldsymbol{x}+4)(\boldsymbol{x}+\mathbf{5})
$$

(ii) $x^{2}-6 x+8=x^{2}-(4+2) x+8=x^{2}-4 x-2 x+8$

$$
=x(x-4)-2(x-4)=(x-4)(x-2)
$$

(iii) Do yourself.
(iv) $p^{2}+5 p q-36 q^{2}$

$$
\begin{aligned}
& =p^{2}+(9-4) p q-36 q^{2}=p^{2}+9 p q-4 p q-36 q^{2} \\
& =p(p+9 q)-4 q(p+9 q)=(\boldsymbol{p}+\mathbf{9 q})(\boldsymbol{p}-\mathbf{4 q})
\end{aligned}
$$

(v) Do yourself.
(vi) $m^{2}+11 m n+18 n^{2}=m^{2}+(9+2) m n+18 n^{2}$

$$
\begin{aligned}
& =m^{2}+9 m n+2 m n+18 n^{2} \\
& =m(m+9 n)+2 n(m+9 n) \\
& =(\boldsymbol{m}+9 \boldsymbol{n})(\boldsymbol{m}+\mathbf{2 n})
\end{aligned}
$$

2. (i) $x^{2}+4 y^{2}+z^{2}+4 x y-2 x z-4 y z$

$$
\begin{aligned}
=(x)^{2}+(2 y)^{2}+(-z)^{2}+2 \times & x \times 2 y+2 \times 2 y \\
=(\boldsymbol{x}+\mathbf{2 y}-\boldsymbol{z})^{2} & \times(-z)+2 \times(-z) \times(x)
\end{aligned}
$$

(ii) $4 p^{2}+9 q^{2}+4 r^{2}+12 p q+12 q r+8 p r$

$$
\begin{aligned}
=(2 p)^{2}+(3 q)^{2}+(2 r)^{2}+2 \times 2 p \times 3 q & +2 \times 3 q \\
=(\mathbf{2} \boldsymbol{p}+\mathbf{3 q}+\mathbf{2 r})^{\mathbf{2}} & \times 2 r+2 \times 2 p \times 2 r
\end{aligned}
$$

(iii), (iv) Do yourself.
3. (i) $27 x^{3}-8 y^{3}-54 x^{2} y+36 x y^{2}$

$$
\begin{aligned}
& =(3 x)^{3}-(2 y)^{3}-18 x y(3 x-2 y) \\
& =(3 x-2 y)\left(9 x^{2}+4 y^{2}+6 x y\right)-18 x y(3 x-2 y) \\
& =(3 x-2 y)\left(9 x^{2}+4 y^{2}+6 x y-18 x y\right) \\
& =(3 x-2 y)\left(9 x^{2}+4 y^{2}-12 x y\right)=(\mathbf{3 x}-\mathbf{2 y})^{3}
\end{aligned}
$$

(ii) Do yourself.
(iii) $8 y^{3}-125 z^{3}-60 y^{2} z+150 y z^{2}$

$$
\begin{aligned}
& =(2 y)^{3}-(5 z)^{3}-30 y z(2 y-5 z) \\
& =(2 y-5 z)\left\{4 y^{2}+25 z^{2}+10 y z\right\}-30 y z(2 y-5 z) \\
& =(2 y-5 z)\left(4 y^{2}+25 z^{2}+10 y z-30 z y\right) \\
& =(2 y-5 z)\left(4 y^{2}+25 z^{2}-20 y z\right)=(\mathbf{2 y}-\mathbf{5 z})^{3}
\end{aligned}
$$

(iv) Do yourself.
4. (i) $p^{3}+27=(p)^{3}+(3)^{3}=(\boldsymbol{p}+\mathbf{3})\left(\boldsymbol{p}^{2}+\mathbf{9}-\mathbf{3} \boldsymbol{p}\right)$
(ii) Do yourself.
(iii) $1-27 z^{3}=(1)^{3}-(3 z)^{3}=(\mathbf{1}-\mathbf{3 z})\left(\mathbf{1}+9 \boldsymbol{z}^{\mathbf{2}}+\mathbf{3 z}\right)$
(iv) Do yourself.
(v) $64 x^{3}-y^{3}=(4 x)^{3}-(y)^{3}=(4 x-y)\left(16 \boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}+\mathbf{4 x y}\right)$
(vi) Do yourself.
(vii) $\frac{1}{216} p^{3}-8 q^{3}=\left(\frac{p}{6}\right)^{3}-(2 q)^{3}=\left(\frac{\boldsymbol{p}}{\mathbf{6}}-\mathbf{2 q}\right)\left(\frac{\boldsymbol{p}^{2}}{\mathbf{3 6}}+\mathbf{4 \boldsymbol { q } ^ { 2 }}+\frac{\boldsymbol{p} \boldsymbol{q}}{\mathbf{3}}\right)$
5. (i) $10 x y^{4}-10 x^{4} y=10 x y\left(y^{3}-x^{3}\right)$

$$
=10 x y(y-x)\left(y^{2}+x^{2}+x y\right)
$$

(ii) $54 x^{6} y+2 x^{3} y^{4}=2 x^{3} y\left\{27 x^{3}+y^{3}\right\}=2 x^{3} y\left\{(3 x)^{3}+(y)^{3}\right\}$

$$
=2 x^{3} y(3 x+y)\left(9 x^{2}+y^{2}-3 x y\right)
$$

(iii) $(p-2 q)^{3}-(8 q)^{3}$

$$
\begin{aligned}
& =(p-2 q-8 q)\left\{(p-2 q)^{2}+(8 q)^{2}+(p-2 q) 8 q\right\} \\
& =(p-10 q)\left\{p^{2}-4 q^{2}-4 p q+64 q^{2}+8 p q-16 q^{2}\right\} \\
& =(\boldsymbol{p}-\mathbf{1 0 q})\left\{\boldsymbol{p}^{\mathbf{2}}+\mathbf{5 2} \boldsymbol{q}^{\mathbf{2}}+\mathbf{4} \boldsymbol{p} \boldsymbol{q}\right\}
\end{aligned}
$$

(iv) Do yourself.

EXERCISE 6.6

1. (i) $p^{3}+8 q^{3}+64 r^{3}-24 p q r$

$$
\begin{aligned}
& =(p)^{3}+(2 q)^{3}+(4 r)^{3}-3 \times p \times 2 q \times 4 r \\
& =\left(\boldsymbol{p}+\mathbf{2 q}+\mathbf{4 r} \boldsymbol{r}\left\{\boldsymbol{p}^{\mathbf{2}}+\mathbf{4} \boldsymbol{q}^{\mathbf{2}}+\mathbf{1 6} \boldsymbol{r}^{\mathbf{2}}-\mathbf{2} \boldsymbol{p q}-\mathbf{8 q} \boldsymbol{q}-\mathbf{4} \boldsymbol{p r}\right\}\right.
\end{aligned}
$$

(ii) Do yourself.
(iii) $l^{3}+m^{3}-n^{3}+3 l m n$

$$
\begin{aligned}
& =(l)^{3}+(m)^{3}+(-n)^{3}-3 \times l \times(m) \times(-n) \\
& =(\boldsymbol{l}+\boldsymbol{m}-\boldsymbol{n})\left\{\boldsymbol{l}^{\mathbf{2}}+\boldsymbol{m}^{\mathbf{2}}+\boldsymbol{n}^{\mathbf{2}}-\mathbf{l m}+\boldsymbol{m} \boldsymbol{n}+\boldsymbol{n l} \boldsymbol{\}}\right\}
\end{aligned}
$$

(iv), (v) Do yourself.

$$
\text { (vi) } \begin{aligned}
\frac{1}{27} & x^{3}-y^{3}+125 z^{3}+5 x y z \\
& =\left(\frac{x}{3}\right)^{3}+(-y)^{3}+(5 z)^{3}-3 \times \frac{x}{3} \times(-y) \times 5 z \\
& =\left(\frac{\boldsymbol{x}}{\mathbf{3}}-\mathbf{y}+\mathbf{5 z}\right)\left\{\frac{\boldsymbol{x}^{\mathbf{2}}}{\mathbf{9}}+\mathbf{y}^{\mathbf{2}}+\mathbf{2 5}^{\mathbf{2}}+\frac{\boldsymbol{x} \boldsymbol{y}}{\mathbf{3}}+\mathbf{5} \boldsymbol{y z}-\frac{\mathbf{5}}{\mathbf{3}} \boldsymbol{z x}\right\}
\end{aligned}
$$

2. (i) $(3 x-5 y)^{3}+(5 y-9 z)^{3}+(9 z-3 x)^{3}$

Let $3 x-5 y=A, 5 y-9 z=B, 9 z-3 x=C$
Then, $3 x-5 y+5 y-9 z+9 z-3 x=A+B+C$

$$
\begin{array}{lc}
\therefore & A+B+C=0 \\
\therefore & A^{3}+B^{3}+C^{3}=3 A B C \\
\Rightarrow & (3 x-5 y)^{3}+(5 y-9 z)^{3}+(9 z-3 x)^{3} \\
& =\mathbf{3}(\mathbf{3 x}-\mathbf{5 y}) \mathbf{(5 y - 9 z) (\mathbf { 9 z } - \mathbf { 3 x })}
\end{array}
$$

(ii), (iii), (iv) Do yourself.
3. (i) $55^{3}-25^{3}-30^{3}$
$(55)^{3}-(25)^{3}-(30)^{3}$
Let $a=55, b=-25, c=-30$
Then,

$$
a+b+c=0
$$

$\therefore \quad a^{3}+b^{3}+c^{3}=3 a b c$
$(55)^{3}+(-25)^{3}+(-30)^{3}=3 \times 55 \times(-25) \times(-30)$

$$
=90 \times 55 \times 25=\mathbf{1 2 3 7 5 0}
$$

(ii) Do yourself.
(iii) $(9.8)^{3}-(11.3)^{3}+(1.5)^{3}$

Let $a=9.8, b=-11.3, c=1.5$
Then,

$$
a+b+c=0
$$

$\therefore \quad a^{3}+b^{3}+c^{3}=3 a b c$
$(9.8)^{3}+(-11.3)^{3}+(1.5)^{3}=3 \times 9.8 \times(-11.3) \times(1.5)$
$=-498.33$
(iv) Do yourself.

Let's Recall

1. (a) $x+y+z=10$ and $x^{2}+y^{2}+z^{2}=40$

$$
\begin{aligned}
x y+y z+z x & =? \\
(x+y+z)^{2} & =x^{2}+y^{2}+z^{2}+2(x y+y z+z x) \\
(10)^{2} & =40+2(x y+y z+z x) \\
100-40 & =2(x y+y z+z x) \\
x y+y z+z x & =\frac{60}{2}=30 \text { or } x y+\mathbf{y z}+z \boldsymbol{x}=\mathbf{3 0}
\end{aligned}
$$

2. (b) $x+y=5$ and $x y=4$

$$
\begin{aligned}
x^{3}+y^{3} & =? \\
(x+y)^{3} & =x^{3}+y^{3}+3 x y(x+y) \\
(5)^{3} & =x^{3}+y^{3}+3 \times 4(5) \\
125 & =x^{3}+y^{3}+60 \\
125-60 & =x^{3}+y^{3} \Rightarrow 65=x^{3}+y^{3} \\
\boldsymbol{x}^{3}+\boldsymbol{y}^{\mathbf{3}} & =\mathbf{6 5}
\end{aligned}
$$

3. (c) $(x-y)^{3}+(y-z)^{3}+(z-x)^{3}=\mathbf{3}(\boldsymbol{x}-\boldsymbol{y})(\mathbf{y}-\boldsymbol{z})(\boldsymbol{z}-\boldsymbol{x})$
4. (b) Let the two numbers are x and y

Now,
According to question,

$$
x+y=15
$$

and

$$
x^{2}-y^{2}=15
$$

$$
(x+y)(x-y)=15
$$

Putting the value of $(x+y)$

$$
\begin{aligned}
15(x-y) & =15 \\
x-y & =\frac{15}{15} \\
x-y & =\mathbf{1}
\end{aligned}
$$

Hence,
The difference of the numbers is 1 .
5. (c) $a^{3}+b^{3}+c^{3}-3 a b c$ divided by $(a+b+c)$

Then,

$$
=\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
$$

7.

Division of Algebraic Expressions

EXERCISE 7.1

1. (i) $6 x^{2} y z \div 3 x y, \frac{6 x^{2} y z}{3 x y}=2 x z$
(ii) $15 m^{2} n^{3} \div 5 m^{2} n^{2}, \frac{15 m^{2} n^{3}}{5 m^{2} n^{2}}=3 n$
(iii) Do yourself.
2. (i) $\frac{16 m^{3} y^{2}}{4 m^{2} y}=\mathbf{4 m y}$
(ii) $\frac{x^{2}+4 x+4}{x+2}=\frac{(x+2)^{2}}{(x+2)}=\boldsymbol{x}+\mathbf{2}$
(iii) $\frac{16 m^{2}-9 n^{2}}{4 m-3 n}=\frac{(4 m)^{2}-(3 n)^{2}}{4 m-3 n}$

$$
=\frac{(4 m+3 n)(4 m-3 n)}{(4 m-3 n)}=4 \boldsymbol{m}+\mathbf{3 n}
$$

(iv) $\frac{125 x^{3}+64}{25 x^{2}-20 x+16}=\frac{(5 x)^{3}+(4)^{3}}{25 x^{2}-20 x+16}$

$$
=\frac{(5 x+4)\left(25 x^{2}-20 x+16\right)}{\left(25 x^{2}-20 x+16\right)}=\mathbf{5} \boldsymbol{x}+\mathbf{4}
$$

(v) $\frac{9 x^{2}-24 x y+16 y^{2}}{3 x-4 y}=\frac{(3 x-4 y)^{2}}{(3 x-4 y)}=\mathbf{3 x}-\mathbf{4 y}$
(vi) $\frac{216 z^{3}-343 p^{3}}{6 z-7 p}=\frac{(6 z)^{3}-(7 p)^{3}}{(6 z-7 p)}$

$$
\begin{aligned}
& =\frac{(6 z-7 p)\left(36 z^{2}+49 p^{2}+42 p z\right)}{(6 z-7 p)} \\
& =\mathbf{3 6} \boldsymbol{z}^{\mathbf{2}}+\mathbf{4 9} \boldsymbol{p}^{\mathbf{2}}+\mathbf{4 2} \boldsymbol{p} \boldsymbol{z}
\end{aligned}
$$

EXERCISE 7.2

1. (i) $\left(9 m^{5}+12 m^{4}-6 m^{2}\right) \div 3 m^{2}=\frac{9 m^{5}}{3 m^{2}}+\frac{12 m^{4}}{3 m^{2}}-\frac{6 m^{2}}{3 m^{2}}$

$$
=3 m^{3}+4 m^{2}-2
$$

(ii) $\left(x^{2}+7 x+12\right) \div(x+3)=\frac{x^{2}+7 x+12}{x+3}$

$$
\begin{aligned}
& =\frac{x^{2}+4 x+3 x+12}{x+3} \\
& =\frac{x(x+4)+3(x+4)}{x+3} \\
& =\frac{(x+3)(x+4)}{x+3}=\boldsymbol{x}+\mathbf{4}
\end{aligned}
$$

(iii), (iv) Do yourself.
(v) $\left(3 m^{3}+4 m^{2}+5 m+18\right) \div(m+2)$

$$
\begin{array}{r}
3 m^{2}-2 m+9 \\
\frac{3 m^{3}+4 m^{2}+5 m+18}{3 m^{3}+6 m^{2}} \\
\frac{-2 m^{2}+5 m}{-2 m^{2}-4 m}+ \\
+\begin{array}{l}
9 m+18 \\
9 m+18
\end{array} \\
\frac{-\quad-}{\times}
\end{array}
$$

(vi) $3 y^{4}-3 y^{3}-4 y^{2} 4 y \div y^{2}-2 y$

$$
\begin{array}{r}
3 y^{2}+3 y+2 \\
y ^ { 2 } - 2 y \longdiv { 3 y ^ { 4 } - 3 y ^ { 3 } - 4 y ^ { 2 } + 4 y } \\
\frac{-y^{4}+6 y^{3}}{}+\frac{-3 y^{3}-4 y^{2}}{-3 y^{3}-6 y^{2}}+ \\
\frac{2 y^{2}-4 y}{2 y^{2}-4 y} \\
\frac{-\quad+}{\times}
\end{array}
$$

2. (i) $14 x^{2}+13 x-15 \div 7 x-4$

$$
2 x+3, \text { Remainder }=-3
$$

Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
\text { RHS } & =\text { Divisor } \times \text { Quotient }+ \text { Remainder } \\
& =(7 x-4) \times(2 x+3)+(-3) \\
& =7 x \times 2 x-4 \times 2 x+3 \times 7 x-4 \times 3+(-3) \\
& =14 x^{2}-8 x+21 x-12-3=14 x^{2}+13 x-15 \\
\text { LHS } & =\text { Dividend } \\
& =14 x^{2}+13 x-15
\end{aligned}
$$

Thus, \quad LHS $=$ RHS
(ii), (iii) Do yourself.
(iv) $\left(34 x-22 x^{3}-12 x^{4}-10 x^{2}-75\right) \div(3 x+7)$
$\Rightarrow-4 x^{3}+2 x^{2}-8 x+30$, Remainder $=-285$
Now, Dividend $=$ Divisor \times Quotient + Remainder
RHS $=$ Divisor \times Quotient + Remainder

$$
=(3 x+7) \times\left(-4 x^{3}+2 x^{2}-8 x+30\right)+(-285)
$$

$$
=\left(-4 x^{3}+2 x^{2}-8 x+30\right) \times 3 x+\left(-4 x^{3}+2 x^{2}\right.
$$

$$
-8 x+30) \times 7-285
$$

$$
\begin{aligned}
& 3 x + 7 \longdiv { - 4 x ^ { 3 } + 2 x ^ { 2 } - 8 x + 3 0 } \\
& \begin{array}{l}
-12 x^{4}-28 x^{3} \\
+
\end{array} \\
& \begin{array}{r}
\begin{array}{l}
6 x^{3}-10 x^{2} \\
6 x^{3}+14 x^{2} \\
-
\end{array} \\
\hline \begin{array}{l}
-24 x^{2}+34 x \\
-24 x^{2}-56 x \\
+ \\
\hline
\end{array} \\
\begin{array}{l}
90 x-75 \\
-90 x+210 \\
-
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 7 x - 4 \longdiv { 1 4 x ^ { 2 } + 1 3 x - 1 5 } \\
& \frac{14 x^{2}-8 x}{21 x-15} \\
& \begin{array}{r}
\left.\begin{array}{r}
21 x-12 \\
-\quad \\
-3
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
= & -12 x^{4}+6 x^{3}-24 x^{2}+90 x-28 x^{3}+14 x^{2} \\
& \quad-56 x+210-285 \\
= & -12 x^{4}-22 x^{3}-10 x^{2}+34 x-75 \\
\text { LHS } & =\text { Dividend } \\
= & 12 x^{4}-22 x^{3}-10 x^{2}+34 x-75
\end{aligned}
$$

Thus, \quad LHS $=$ RHS
3. (i) $\left(x^{2}-x-42\right),(x+6)$

$$
\begin{array}{r}
x-7 \\
x + 6 \longdiv { x ^ { 2 } - x - 4 2 } \\
x^{2}+6 x \\
\frac{-7 x-42}{-\quad-7 x-42} \\
\frac{+\quad+}{\times}
\end{array}
$$

Yes, $(x+6)$ is a factor of $\left(x^{2}-x-42\right)$
(ii) $\left(4 z^{2}-13 z-12\right),(4 z-3)$

$$
\begin{array}{r}
z-\frac{5}{2} \\
4 z - 3 \longdiv { 4 z ^ { 2 } - 1 3 z - 1 2 } \\
4 z^{2}-3 z \\
\frac{-\quad+}{-10 z-12} \\
-10 z+\frac{15}{2} \\
+\quad- \\
+\frac{39}{2}
\end{array}
$$

No, $(4 z-3)$ is not a factor of $\left(4 z^{2}-13 z-12\right)$
(iii), (iv) Do yourself.
(v) $\left(z^{5}-9 z\right) \div\left(z^{2}+3\right)$

$$
\begin{aligned}
z^{2}+3 & \begin{array}{l}
z^{3}-3 z \\
z^{5}-9 z \\
z^{5}+3 z^{3}
\end{array} \\
& \frac{-}{-3 z^{3}-9 z} \\
& \frac{-3 z^{3}-9 z}{+}
\end{aligned}
$$

$$
=\text { Yes, }\left(z^{2}+3\right) \text { is a factor of }\left(z^{2}-9 z\right)
$$

8. Linear Equations in One Variable

EXERCISE 8.1

1. $\frac{2 y+6}{y+4}=1$

$$
\begin{aligned}
2 y+6 & =y+4 \\
2 y-y & =4-6 \\
y & =-2
\end{aligned}
$$

Check:

$$
\begin{aligned}
\text { LHS } \frac{2(-2)+6}{(-2)+4} & =\frac{-4+6}{-2+4}=\frac{2}{2}=1 \text { RHS } \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

2. $\frac{3 x+5}{2 x+7}=\frac{4}{1}$

$$
\begin{aligned}
3 x+5 & =4(2 x+7) \\
3 x+5 & =8 x+28 \\
5-28 & =8 x-3 x \\
\Rightarrow \quad-23 & =5 x, x=-\frac{23}{5}
\end{aligned}
$$

Check :
L.H.S.

$$
=\frac{3 x+5}{2 x+7}=\frac{3 \times\left(\frac{-23}{5}\right)+5}{2 \times\left(\frac{-23}{5}\right)+7}
$$

$$
=\frac{\frac{-69+25}{5}}{\frac{-46+35}{5}}
$$

$$
=\frac{-44}{-11}=\frac{4}{1}
$$

$$
\mathrm{RHS}=\frac{4}{1}
$$

LHS = RHS
3. $\frac{2 x+1}{3 x-2}=\frac{5}{9} \Rightarrow 18 x+9=15 x-10,18 x-15 x=-10-9$,

$$
3 x=-19, x=\frac{-19}{3}
$$

Check :

$$
\begin{aligned}
\text { LHS } & =\frac{2 x+1}{3 x-2}=\frac{2 \times\left(-\frac{19}{3}\right)+1}{3 \times\left(-\frac{19}{3}\right)-2} \\
& =\frac{\frac{-38+3}{3}}{-19-2}=\frac{-35}{3 \times(-21)} \\
& =\frac{-35}{-63}=\frac{5}{9} \\
\text { LHS } & =\frac{5}{9} \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

4. Do yourself.
5. $\frac{1-9 y}{19-3 y}=\frac{5}{8}$,

$$
8-72 y=95-15 y \quad \Rightarrow 8-95=-15 y+72 y
$$

$$
-87=57 y, y=\frac{-87}{57}=\frac{-29}{19}
$$

Check : \quad LHS $=\frac{1-9 y}{19-3 y}=\frac{1-9 \times\left(\frac{-29}{19}\right)}{19-3 \times\left(\frac{-29}{19}\right)}$

$$
=\frac{\frac{19+261}{19}}{\frac{361+87}{19}}=\frac{280}{448}=\frac{5}{8}
$$

$$
\text { RHS }=\frac{5}{8}
$$

LHS = RHS
6. Do yourself.
7. $\frac{0.4 z-3}{1.5 z+9}=\frac{-7}{5}$

$$
\Rightarrow \quad 2 z-15=-10.5 z-63
$$

$$
12.5 z=-63+15, \quad \Rightarrow \quad 12.5 z=-48, z=\frac{-48}{12.5}=\frac{-\mathbf{9 6}}{\mathbf{2 5}}
$$

8. Do yourself.
9. $\frac{2 x}{3 x+1}=\frac{-3}{1}, 2 x=-9 x-3,2 x+9 x=-3,11 x=-3, x=\frac{-\mathbf{3}}{\mathbf{1 1}}$
10. $\frac{17(2-x)-5(x+12)}{1-7 x}=\frac{8}{1}, \frac{34-17 x-5 x-60}{1-7 x}=\frac{8}{1}$,

$$
\begin{aligned}
& \frac{-22 x-26}{1-7 x}=\frac{8}{1}, 8-56 x=-22 x-26,8+26=-22 x+56 x \\
& 34=34 x \Rightarrow x=\mathbf{1}
\end{aligned}
$$

11. $\frac{y-(7-8 y)}{9 y-(3+4 y)}=\frac{2}{3}, 3 y-3(7-8 y)=18 y-2(3+4 y)$,
$3 y-21+24 y=18 y-6-8 y, 27 y-21=10 y-6$,
$27 y-10 y=-6+21,17 y=15 \Rightarrow y=\frac{\mathbf{1 5}}{\mathbf{1 7}}$

EXERCISE 8.2

1. Let the unit place be x, then the digit in the tens place $=12-x$

The original number $=10 \times(12-x)+x=120-9 x$
Reversing the digits the new number $=10 x+(12-x)$

$$
=10 x+12-x=9 x+12
$$

Now, $120-9 x+18=9 x+12,138-12=9 x+9 x, 126=18 x$
$\Rightarrow x=7$
The digit in the unit place $=7$
The digit in the tens place $=12-7=5$
The original number $=57$
Check:
The original number $=120-9 x=120-9 \times 7=120-63=\mathbf{5 7}$
2. Let the numbers be $7 x$ and $8 x$
$7 x+8 x=45, \quad 15 x=45 \Rightarrow x=\frac{45}{15}=3$
First number $=7 x=7 \times 3=21$,
Second number $=8 x=8 \times 3=\mathbf{2 4}$
3., 4., 5. Do yourself.
6. Let the Meera's present age $=x$, Mother's age $=4 x$

After five year, Meera's age $=x+5$ and Mother's age $=4 x+5$
According to the question
$3(x+5)=4 x+5,3 x+15=4 x+5,15-5=4 x-3 x, 10=x$
\therefore Meera's age $=10$ years and Mother's age $=40$ years.
7. Let the unit place be x and tens place be $3 x$

The original number $=3 x \times 10+x$
Reversing the digits the new number $=10 x+3 x$
According to the question, we have, $30 x+x+10 x+3 x=88$,
$44 x=88, x=2$
Unit place $=2$ and tens place $=3 \times 2=6$
The number $=\mathbf{6 2}$
8. Let the base of triangle be x and altitude $=\frac{5 x}{3}$

Case I

Case II

$$
\text { Area of triangle }=\frac{1}{2} \times \text { base } \times \text { altitude }
$$

$$
\begin{aligned}
\frac{5 x \times x}{3 \times 2} & =\frac{1}{2} \times(x-2)\left(\frac{5 x}{3}+4\right) \\
\frac{5 x^{2}}{6} & =\frac{1}{2}\left\{\frac{5 x^{2}}{3}+4 x-\frac{10 x}{3}-8\right\} \\
\frac{5 x^{2}}{6} & =\frac{5 x^{2}}{6}+2 x-\frac{5 x}{3}-4 \\
\frac{6 x-5 x}{3}-4 & =0 \\
\frac{x}{3} & =4 \Rightarrow x=12
\end{aligned}
$$

Base $=\mathbf{1 2} \mathbf{~ c m}$ and Altitude $=\mathbf{2 0} \mathbf{~ c m}$.
9. Let the breadth $=x, \quad$ length $=4+x$

Case I
Area of rectangle
$=l \times b$
$=(x+4) \times x$

Case II
Area of rectangle
$=(x+7)(x+3)$

Now according to the question, we have

$$
\begin{array}{lc}
x(x+4)+81=(x+7)(x+3) & x^{2}+4 x+81=x^{2}+7 x+3 x+21 \\
x^{2}+4 x+81=x^{2}+10 x+21 & 81-21=10 x-4 x \\
60=6 x \Rightarrow x=10 & \\
\text { Breadth }=\mathbf{1 0} \mathbf{~ c m} \text { and Length }=10+4=\mathbf{1 4} \mathbf{~ c m}
\end{array}
$$

Check :

$$
\begin{gathered}
x(x+4)+81=(x+7)(x+3), \quad 10(10+4)+81=(10+7)(10+3) \\
10 \times 14+81=17 \times 13,140+81=17 \times 13 \\
221=221
\end{gathered}
$$

10. Let the volume of iron piece be x and copper piece be $2 x$.

$$
\begin{gathered}
x \times 7.8+2 x \times 8.9=1280, \frac{78 x}{10}+\frac{178}{10} x=1280, \frac{256 x}{10}=1280 \\
256 x=12800, x=\frac{12800}{256}=50 \\
\text { Volume of iron }=50 \mathrm{~cm}^{3} \\
\text { Volume of copper }=100 \mathrm{~cm}^{3}
\end{gathered}
$$

11. Let the land which can be ploughed in one day be x.

$$
\begin{aligned}
14 \times x & =(x+20) \times 10,14 x=10 x+200 \\
14 x-10 x & =200 \Rightarrow 4 x=200 \Rightarrow x=\mathbf{5 0} \\
\text { Area of field } & =50 \times 14=\mathbf{7 0 0}
\end{aligned}
$$

50 hectares and 700 hectares.

12. Let the first prize be x.

Second prize be $\frac{5 x}{6}$, Third prize be $\frac{5 x \times 4}{6 \times 5}=\frac{2 x}{3}$

$$
\begin{aligned}
x+\frac{5 x}{6}+\frac{2 x}{3} & =150 \\
x\left\{1+\frac{5}{6}+\frac{2}{3}\right\} & =150 \\
\frac{15}{6} \times x & =150, x=\frac{150 \times 6}{15}=60
\end{aligned}
$$

First prize $=₹ \mathbf{6 0}, \quad$ Second prize $=₹ \mathbf{5 0}$, Third prize $=₹ \mathbf{4 0}$
13., 14. Do yourself.

Let's Recall

1. (d) $\sqrt{2+\sqrt{x}}=3$

Squaring both side,

$$
\begin{aligned}
2+\sqrt{x} & =9 \\
\sqrt{x} & =9-2 \\
\sqrt{x} & =7
\end{aligned}
$$

Again squaring both side,

$$
\begin{aligned}
(\sqrt{x})^{2} & =(7)^{2} \\
x & =49
\end{aligned}
$$

2. (d) $\frac{2 x-3}{3 x+2}=-\frac{2}{3}$

$$
6 x-9=-6 x-4
$$

$$
\begin{aligned}
6 x+6 x & =-4+9 \\
12 x & =5 \\
x & =\frac{\mathbf{5}}{\mathbf{1 2}}
\end{aligned}
$$

3. (b) Let two numbers are x and y

Now,
According to question

And

$$
x+y=15
$$

$$
x^{2}-y^{2}=15
$$

$$
(x+y)(x-y)=15
$$

Putting the value of $(x+y)$

$$
\begin{aligned}
15(x-y) & =15 \\
x-y & =\frac{15}{15} \\
x-y & =\mathbf{1}
\end{aligned}
$$

Hence, The difference of the numbers is 1 .
4. (c) Let man's age $=x$

His wife's age $=y$
Now, According to question

$$
\begin{aligned}
x+y & =99 \\
\text { and } x & =y+9 \\
y+9+y & =99 \\
y+y & =99-9,2 y=90, y=45 \text { years }
\end{aligned}
$$

Then, man's age $x=y+9, x=45+9, x=54$
Hence, man's age is 54.
5. (c) No unique solution.

Unit-III : Commercial Mathematics

9. Ratios and Percentage

EXERCISE 9.1

9. Number of defective tyres $=28000$ of $4 \frac{1}{4} \%$

$$
\begin{aligned}
& =28000 \times \frac{17}{4 \times 100} \\
& =\frac{280 \times 17}{4} \\
& =70 \times 17=1190
\end{aligned}
$$

Hence, the number of defective tyres in company is $\mathbf{1 1 9 0}$.

EXERCISE 9.2

1. Decrease 216 by $37 \frac{1}{2} \%$

$$
\begin{aligned}
& =216 \times 37 \frac{1}{2} \% \\
& =216 \times \frac{75}{2} \% \\
& =216 \times \frac{75}{2 \times 100} \\
& =81
\end{aligned}
$$

Decreased value $=216-81=\mathbf{1 3 5}$.
2. Increase 28 by 125%

$$
\begin{aligned}
& =28 \times 125 \% \\
& =28 \times \frac{125}{100} \\
& =35 \\
\text { Increased value } & =28+35 \\
& =63
\end{aligned}
$$

3. Let the number be x.

When, increased by $15 \%=x \times 15 \%$

$$
\begin{aligned}
& =x \times \frac{15}{100} \\
& =\frac{3 x}{20}
\end{aligned}
$$

According to question, $x+\frac{3 x}{20}=161$

$$
\begin{aligned}
\frac{20 x+3 x}{20} & =161 \\
23 x & =161 \times 20 \\
x & =\frac{161 \times 20}{23} \\
x & =140
\end{aligned}
$$

Hence, the number is $\mathbf{1 4 0}$.
4. Do yourself.
5. The cost of flat after $36 \%=100 \%+36 \%$

$$
\begin{aligned}
& =136 \% \text { of } 1900000 \\
& =\frac{136}{100} \times 1900000 \\
& =136 \times 19000 \\
& =₹ 2584000
\end{aligned}
$$

Then,

Hence, the cost of flat today is ₹ $\mathbf{2 5 8 4 0 0 0}$.
6. Amount spent by a man in a month $=₹ 880$

$$
\begin{aligned}
\text { Amount for rent } & =26 \% \\
\text { Amount of that his rent } & =26 \% \text { of } ₹ 880 \\
& =880 \times \frac{26}{100} \\
& =\frac{88 \times 26}{10}=₹ \mathbf{2 2 8 . 8 0}
\end{aligned}
$$

7. After spending of $88 \%, 12 \%$ of his income remains

Use Proportion Method
His income : ₹ 2160 : : 100 : 12

$$
\text { His income }=\frac{100 \times ₹ 2160}{12}=₹ \mathbf{1 8 0 0 0}
$$

8. Do yourself.
9. New height of the tree after increased by 12.5%

$$
\begin{aligned}
& =4.8 \mathrm{~m}+4.8 \mathrm{~m} \times 12.5 \% \\
& =4.8 \mathrm{~m}+4.8 \mathrm{~m} \times \frac{12.5}{100} \\
& =4.8 \mathrm{~m}+0.6 \mathrm{~m} \\
& =5.4 \mathrm{~m}
\end{aligned}
$$

Thus, the new height of tree is $\mathbf{5 . 4} \mathbf{~ m}$.
10. Number of the house to be sold in 2006

$$
\begin{aligned}
& =4260+20 \% \text { of } 4260 \\
& =4260+4260 \times \frac{20}{100} \\
& =4260+852 \\
& =5112
\end{aligned}
$$

Hence, the number of house in 2006 is $\mathbf{5 1 1 2}$.
11. Do yourself.
12. Let the number of passengers carried a train in 2004 be x.

Number of passengers carried by a train in $2005=x+x \times 8 \%$

$$
\begin{aligned}
& =x+x \times \frac{8}{100} \\
& =x+\frac{2 x}{25} \\
& =\frac{27 x}{25}
\end{aligned}
$$

Number of passengers carried by a train in 2006

$$
=\frac{27 x}{25}+\frac{27 x}{25} \times 8 \%
$$

$$
\begin{aligned}
& =\frac{27}{25} x+\frac{27}{25} x \times \frac{8}{100} \\
& =\frac{27}{25} x+\frac{27}{25} x \times \frac{2}{25} \\
& =\frac{27}{25} x\left[1+\frac{2}{25}\right] \\
& =\frac{27}{25} x \times \frac{27}{25} \\
& =\left(\frac{27}{25}\right)^{2} x \\
\text { Increase in 2004 to 2006 } & =\left(\frac{27}{25}\right)^{2} x-x \\
& =\frac{729}{625} x-x \\
& =\frac{729 x-625 x}{625} \\
& =\frac{104}{625} x \\
\text { In Percentage } & =\frac{104 x \times 100}{625 \times x} \\
& =\frac{104 \times 100}{625} \\
& =\mathbf{1 6 . 6 4 \%}
\end{aligned}
$$

13. Method-I

Mohan is taller than Ram $=108 \%$
Ankur is shorter than Ram $=90 \%$
Percentage of Mohan taller than Ankur $=\left[\frac{108 \%-90 \%}{90 \%} \times 100\right] \%$

$$
\begin{aligned}
& =\left[\frac{18 \%}{90 \%} \times 100\right] \% \\
& =\left[\frac{1}{5} \times 100\right] \% \\
& =\mathbf{2 0} \%
\end{aligned}
$$

Method-II

Let the Ram tall be x.
Then,
Mohan is taller than Ram $=x+x$ of 8%

$$
=x+x \times \frac{8}{100}
$$

$$
=x+\frac{2 x}{25}=\frac{27 x}{25}
$$

Ankur is shorter than Ram $=x-x \times 10 \%$

$$
\begin{aligned}
& =x-x \times \frac{10}{100} \\
& =x-\frac{x}{10}=\frac{9 x}{10}
\end{aligned}
$$

Percentage of Mohan taller than Ankur $\left[\frac{\frac{27}{25} x-\frac{9 x}{10}}{\frac{9 x}{10}} \times 100\right] \%$
$\left[\frac{54 x-45 x}{50} \times \frac{10}{9 x} \times 100\right] \%$
$\left[\frac{9 x}{50} \times \frac{10}{9 x} \times 100\right] \%$
$=\left[\frac{10 \times 100}{50}\right] \%=\mathbf{2 0 \%}$

10.

EXERCISE 10.1

1. $\mathrm{SP}=₹ 3240$, gain $=8 \%, \mathrm{CP}=$?

$$
\begin{aligned}
\mathrm{CP} & =\frac{100}{100+8} \times 3240 \\
& =₹ 3000
\end{aligned}
$$

2. CP of Pens $=₹ 200$, CP of Pencils $=₹ 50$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { SP of Pens }=\frac{100+10}{100} \times 200 \\
\\
=\frac{110 \times 200}{100}=₹ 220 \\
\text { SP of Pencils }=\frac{100-20}{100} \times 50=\frac{80 \times 50}{100}=₹ 40 \\
\text { Total CP }=₹(200+50)=₹ 250 \\
\text { Total } \mathrm{SP}=₹(220+40)=₹ 260, \quad \mathrm{SP}>\mathrm{CP} \\
\text { Profit }=\mathrm{SP}-\mathrm{CP}=₹(260-250)=₹ 10 \\
\text { Profit } \%=\frac{\text { Profit } \% \times 100}{\mathrm{CP}}=\frac{10 \times 100}{250}=4 \% \\
\text { Profit }=\mathbf{4 \%}
\end{array}
\end{aligned}
$$

3. $\mathrm{CP}=\frac{100}{100-\text { Loss } \%} \times \mathrm{SP}$

$$
\begin{aligned}
& =\frac{100}{100-12} \times 1320 \\
& =₹ \frac{100 \times 1320}{88} \\
& =₹ \mathbf{1 5 0 0}
\end{aligned}
$$

4. $C P=₹ 1200$, Profit of $\mathrm{Sonu}=10 \%, \mathrm{SP}=$?

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Gain } \%}{100} \times \mathrm{CP} \\
& =\frac{100+10}{100} \times 1200 \\
& =₹ \frac{110 \times 1200}{100}=₹ 1320,
\end{aligned}
$$

$$
\text { CP of John's cycle }=₹ 1320
$$

Profit of Salim $=12 \%, \mathrm{SP}=$?

$$
\begin{aligned}
\mathrm{SP} & =\frac{100+12}{100} \times 1320 \\
& =₹ \frac{112 \times 1320}{100} \\
& =₹ \mathbf{1 4 7 8 . 4 0}
\end{aligned}
$$

5. Cost of 20 quires $=250$, Cost of 1 quires $=\frac{250}{20}=₹ 12.50$,

$$
\begin{aligned}
\text { Gain } \%=20 \%, \mathrm{CP} & =₹ 12.50 \\
\mathrm{SP} & =\frac{100+\text { Gain } \%}{100} \times \mathrm{CP} \\
\mathrm{SP} & =\frac{100+20}{100} \times 12.50 \\
\mathrm{SP} & =₹ \frac{120 \times 1250}{100 \times 100}=₹ \mathbf{1 5}
\end{aligned}
$$

6., 7. Do yourself.
8. $\mathrm{SP}=₹ 360, \operatorname{Loss} \%=10, \mathrm{CP}=$?

$$
\begin{aligned}
C P & =\frac{100}{100-10} \times 360 \\
& =\frac{100 \times 360}{90}=₹ 400
\end{aligned}
$$

In other case $C P=₹ 400$

$$
\begin{aligned}
\text { SP } & =₹ 460, \mathrm{SP}>\mathrm{CP} \\
\text { Profit } & =₹(460-400)=₹ 60 \\
\text { Profit } \% & =\frac{\text { Profit } \% \times 100}{\mathrm{CP}}=\frac{60 \times 100}{400}=15 \% \\
\text { Profit } & =\mathbf{1 5 \%}
\end{aligned}
$$

9., 10., 11. Do yourself.
12. S.P. $=₹ 360$, Loss per cent $=25 \%, C P=\frac{100}{100-25} \times$ SP

$$
=\frac{100 \times 360}{75}=₹ 480
$$

Now the $\mathrm{CP}=₹ 480$ and Gain $=25 \%$,

$$
\begin{aligned}
\text { SP } & =\frac{100+25}{100} \times 480 \\
& =₹ \frac{125 \times 480}{100} \\
& =₹ \mathbf{6 0 0}
\end{aligned}
$$

13. Do yourself.
14. Let the CP of 1 fan be ₹ x, CP of 4 fans $=₹ 4 x$

$$
\begin{aligned}
\text { SP of } 4 \text { fans } & =\text { CP of } 5 \text { fans }=₹ 5 x, \text { SP }>\mathrm{CP} \\
\text { Profit } & =₹(5 x-4 x)=₹ x \\
\text { Profit } \% & =\frac{\text { Profit } \times 100}{\text { C.P. }} \\
& =\frac{x \times 100}{4 x}=\mathbf{2 5 \%}
\end{aligned}
$$

15. Do yourself.
16. Difference in the percentages of Profit $=10 \%-(-5 \%), 10+5$ $=15 \%$, Let the CP be x, Then 15% of $x=375$

$$
\frac{15 \times x}{100}=375
$$

$$
x=₹ \mathbf{2 5 0 0}
$$

17. Case I : $\mathrm{SP}=67.50$, Loss $=10 \%, \mathrm{CP}=$?,

$$
\begin{aligned}
\mathrm{CP} & =\frac{100}{100-10} \times 67.50 \\
& =\frac{100 \times 6750}{90 \times 100} \\
\mathrm{CP} & =₹ 75
\end{aligned}
$$

Case II : SP $=82.50$ and $\mathrm{CP}=₹ 75$,

$$
\text { Profit }=82.50-75.00=7.50
$$

$$
\text { Profit } \%=\frac{\text { Profit } \times 100}{\text { C. P. }}
$$

$$
=\frac{7.50 \times 100}{75}
$$

$$
=\frac{750 \times 100}{75 \times 100}=\mathbf{1 0 \%}
$$

18. $\mathrm{SP}=₹ 644, \mathrm{CP}=x$, gain $=\frac{x}{6}$, gain $\%=\frac{\text { gain } \times 100}{\mathrm{CP}}=\frac{x \times 100}{6 \times x}$ $=\frac{100}{6} \%=\frac{50}{3} \%=\mathbf{1 6 . 7} \%$
19. Case I. $\mathrm{CP}=800 \times \frac{3}{4}=600$, Loss $=\frac{600 \times 10}{100}=60$,

Loss $=\mathrm{CP}-\mathrm{SP}, \quad 60=600-\mathrm{SP}, \quad \mathrm{SP}=₹ 540$
Case II. CP $=800 \times \frac{1}{4}=200$, Profit $=\frac{200 \times 10}{100}=20$,
$\mathrm{SP}=200+20=220$
Total SP $=540+220=₹ 760, \quad$ Total CP $=₹ 800$, Loss $=\mathrm{CP}-\mathrm{SP}=₹(800-760)$ Loss $=₹ 40$
20. Do yourself.

EXERCISE 10.2

1. (i) Net selling Price $=$ Marked price - Discount

$$
\begin{aligned}
\text { Discount } \% & =\frac{\text { Discount }}{\text { Marked Price }} \times 100, \\
20 & =\frac{x \times 100}{85} \Rightarrow x=17 \\
\mathrm{NSP} & =85-17 \\
& =₹ \mathbf{6 8}
\end{aligned}
$$

(ii) Do yourself.
2. (i) Market Price $=\frac{100}{100-\text { Discount } \%} \times$ Net S. P.

$$
\begin{aligned}
& =\frac{100 \times 1860}{100-7} \\
& =₹ \frac{1860 \times 100}{93}=₹ \mathbf{2 0 0 0}
\end{aligned}
$$

(ii) Do yourself.
3. (i) Discount $=$ Marked Price - Net SP $=40-34=₹ 6$

Discount $\%=\frac{\text { Discount } \times 100}{\text { Marked Price }}=\frac{6 \times 100}{40}=\mathbf{1 5 \%}$
(ii) Do yourself.
4. Discount $\%=\frac{\text { Discount } \times 100}{\text { Marked Price }}=\frac{75 \times 100}{750}=\mathbf{1 0 \%}$
5. Discount $\%=\frac{\text { Discount } \times 100}{\text { Marked Price }}, 8=\frac{x \times 100}{8750}, x=\frac{8 \times 8750}{100}=₹ 700$

$$
\begin{aligned}
\text { Net } \mathrm{SP} & =\text { Marked Price }- \text { Discount } \\
& =8750-700=₹ \mathbf{8 0 5 0}
\end{aligned}
$$

6. Do yourself.
7. Net $S P=54, \quad$ Discount $=10 \%, \quad$ Marked Price $=$?,

Marked Price $=\frac{100}{100-10} \times 54=\frac{100 \times 54}{90}=₹ \mathbf{6 0}$
8. Do yourself.
9. Let the CP be ₹ 100 ,
then Marked Price $=100+25=125$,
Discount $=\frac{125 \times 20}{100}=25 \quad \mathrm{SP}=125-25=₹ 100$,
Profit $=100-100=\mathbf{0}$
No loss, No profit.
10. Net selling price $=\frac{(100-\text { Discount } \%)}{100} \times$ Marked Price

$$
=₹ \frac{100-12}{100} \times 5400=₹ 4752
$$

Now,

$$
\begin{aligned}
\text { C.P. } & =\frac{100}{100+8} \times 4752 \\
& =₹ \frac{100 \times 4752}{108}=₹ \mathbf{4 4 0 0}
\end{aligned}
$$

11. Marked Price $=₹ 800$, First discount $=\frac{800 \times 12}{100}=₹ 96$

Price after first discount $=800-96=₹ 704$

$$
\text { Second discount }=\frac{704 \times 4}{100}=₹ 28.16
$$

Price after second discount $=₹ 704.00-28.16=₹ \mathbf{6 7 5 . 8 4}$
12. Do yourself.

EXERCISE 10.3

1. On ₹ 100 , the tax paid was ₹ 5
(i) On ₹ 12000 for a T.V. the tax paid would be

$$
=₹ \frac{5}{100} \times 12000=₹ 600
$$

Bill amount for a T.V. $=₹ 12000+₹ 600$

$$
\text { = ₹ } 12600
$$

(ii) On ₹ 1800 for a leather coat, the tax paid would be

$$
=₹ \frac{5}{100} \times 1800=₹ 90
$$

Bill amount for a leather coat $=₹ 1800+₹ 90=₹ \mathbf{1 8 9 0}$
(iii) On ₹ 50 for two bars soaps, the tax paid would be

$$
=₹ \frac{5}{100} \times 50=₹ 2.50
$$

Bill amount for two bars soaps $=₹ 50+₹ 2.50=₹ \mathbf{5 2 . 5 0}$
(iv) On ₹ 3300 for an air cooler, the tax paid would be

$$
=₹ \frac{5}{100} \times 3300=₹ 165
$$

Bill amount for an air cooler $=₹ 3300+₹ 165=₹ \mathbf{3 4 6 5}$
2. Salex tax $=₹ 2700$ - ₹ $2500=₹ 200$

$$
\text { The rate of sale tax }=\frac{₹ 200}{₹ 2500} \times 100 \%=\mathbf{8 \%}
$$

3., 4. Do yourself.

11.

Compound Interest

EXERCISE 11.1

1. \quad Principal for the first year $=₹ 5000$

$$
\text { Interest for first year }=\frac{₹ 5000 \times 10 \times 1}{100}=₹ 500
$$

Amount at the end of first year $=₹(5000+500)$
Principal for the second year $=₹ 5500$

$$
\text { Interest for second year }=\frac{₹ 5500 \times 10 \times 1}{100}=550
$$

Amount at the end of second year $=₹(5500+550)=₹ \mathbf{6 0 5 0}$

$$
\begin{aligned}
\mathrm{CI} & =\text { Amount }- \text { Principal } \\
& =₹ 6050-₹ 5000 \\
& =₹ \mathbf{1 0 5 0}
\end{aligned}
$$

2. Principal for the first year $=₹ 3000$

$$
\text { Interest for the first year }=₹ \frac{3000 \times 1 \times 5}{100}=₹ 150
$$

Amount at the end of the first year $=₹(3000+150)=₹ 3150$
Principal for the second year $=₹ 3150$
Interest for the second year $=₹ \frac{3150 \times 1 \times 5}{100}=₹ 157.50$
Amount at the end of the second year $=₹(3150+157.50)$
= ₹ 3307.50

$$
\text { CI = Amount }- \text { Principal }=₹ 3307.50-₹ 3000
$$

$$
\text { = ₹ } \mathbf{3 0 7 . 5 0}
$$

3. Principal for the first year $=₹ 625$

$$
\text { Interest for the first year }=₹ \frac{625 \times 1 \times 4}{100}=₹ 25
$$

Amount at the end of the first year $=₹(625+25)=₹ 650$
Principal for the second year $=₹ 650$

Interest for the second year $=\frac{650 \times 1 \times 4}{100}=₹ 26$
Amount at the end of second year $=₹(650+26)=₹ 676$
C.I. $=$ Amount - Principal $=₹(676-625)=₹ 51$
4., 5., 6., 7., 8., 9. Do yourself.
10. Principal for the first year $=₹ 2400$

$$
\text { Interest for the first year }=₹ \frac{2400 \times 1 \times 20}{100}=₹ 480
$$

Amount at the end of the first year $=₹(2400+480)=₹ 2880$
Principal for the second year $=₹ 2880$

$$
\begin{aligned}
\text { Interest for second year } & =\frac{2880 \times 1 \times 20}{100}=576 \\
& =₹(2880+576)=₹ \mathbf{3 4 5 6}
\end{aligned}
$$

Amount at the end of second year $=₹ 3456$
Principal for the third year $=₹ 3456$

$$
\text { Interest for the third year }=₹ \frac{3456 \times 1 \times 20}{100}=₹ 691.20
$$

Amount at the end of third year $=₹(3456+691.20)$

$$
\text { = ₹ } 4147.20
$$

C.I. $=$ Amount - Principal $=₹(4147.20-2400)=₹ 1747.20$

EXERCISE 11.2

1. $P=₹ 625, R=4 \%, n=2$ years,

$$
\begin{aligned}
A=P\left(1+\frac{R}{100}\right)^{n} & =625\left(1+\frac{4}{100}\right)^{2}=625 \times\left(\frac{26}{25}\right)^{2} \\
A & =625 \times \frac{26 \times 26}{25 \times 25} \Rightarrow ₹ \mathbf{6 7 6}
\end{aligned}
$$

2., 3., 4., 5. Do yourself.
7. $P=₹ 4000, R=2.5 \%, n=2, A=P\left(1+\frac{R}{100}\right)^{2}$

$$
\begin{aligned}
& =4000\left(1+\frac{2.5}{100}\right)^{n}=₹ 4000 \times\left(\frac{41}{40}\right)^{2} \\
& =₹ 4000 \times \frac{41 \times 41}{40 \times 40}=₹ \mathbf{4 2 0 2 . 5 0}
\end{aligned}
$$

8. Do Yourself.
9. $P=₹ 16000, R=\frac{25}{2} \%, n=3$ years,

$$
\begin{aligned}
A & =₹ 16000\left(1+\frac{25}{2 \times 100}\right)^{3}=₹ 16000\left(\frac{9}{8}\right)^{3} \\
& =₹ 16000 \times \frac{9 \times 9 \times 9}{8 \times 8 \times 8}=₹ \mathbf{2 2 7 8 1 . 2 5}
\end{aligned}
$$

10. Do yourself.

EXERCISE 11.3

1. $P=₹ 4096, R=12 \frac{1}{2}$ or $\frac{25}{2} \%$ per annum or $\frac{25}{4}$ per half yearly.

$$
T=18 \text { months or } 3 \text { half years. }
$$

$$
\begin{aligned}
A & =P\left(1+\frac{R}{100}\right)^{n}=4096\left(1+\frac{25}{4 \times 100}\right)^{3} \\
& =₹ 4096\left(\frac{17}{16}\right)^{3}=\frac{4096 \times 17 \times 17 \times 17}{16 \times 16 \times 16} \\
& =₹ 4913
\end{aligned}
$$

2. Do yourself.
3. $P=₹ 1000, R=2 \%, n=1$ year

When interest is compounded half yearly, then

$$
\begin{aligned}
P & =₹ 1000, R=\frac{2}{2} \%=1 \%, n=1 \times 2=2 \text { years } \\
A & =P\left(1+\frac{R}{100}\right)^{n}=1000\left(1+\frac{1}{100}\right)^{2} \\
& =1000 \times \frac{101 \times 101}{100 \times 100}=₹ \mathbf{1 0 2 0 . 1 0}
\end{aligned}
$$

4. Do yourself.
5. $P=₹ 8000, R=10 \%, n=\frac{3}{2}$ years.

When interest is compounded half yearly, then.
$P=₹ 8000, R=\frac{10}{2}=5 \%, n=\frac{3 \times 2}{2}=3$ years

$$
\begin{aligned}
A & =P\left(1+\frac{R}{100}\right)^{n}=8000\left(1+\frac{5}{100}\right)^{3}=8000\left(\frac{21}{20}\right)^{3} \\
& =₹ \frac{8000 \times 21 \times 21 \times 21}{20 \times 20 \times 20}=₹ \mathbf{9 2 6 1}
\end{aligned}
$$

6., 7. Do yourself.
8. $P=40960, R=\frac{12.5}{2} \%, n=\frac{3 \times 2}{2}$ years $=3$ years

$$
\begin{aligned}
A=P\left(1+\frac{R}{100}\right)^{n} & =40960\left(1+\frac{125}{20 \times 100}\right)^{3} \\
=40960\left(\frac{17}{16}\right)^{3} & =₹ 40960 \frac{17 \times 17 \times 17}{16 \times 16 \times 16} \\
& =₹ 49130 \\
\text { Amount }- \text { Principal } & =\text { C.I., } \\
\text { C.I. } & =49130-40960=₹ \mathbf{8 1 7 0}
\end{aligned}
$$

EXERCISE 11.4

1. $P=₹ x, A=₹ 4913, R=\frac{25}{2 \times 2}, n=\frac{3 \times 2}{2}$ years

$$
\begin{aligned}
& A=P\left(1+\frac{R}{100}\right)^{n}, 4913=x\left(1+\frac{25}{4 \times 100}\right)^{3}, 4913=x \times\left(\frac{17}{16}\right)^{3} \\
& \frac{4913 \times 16 \times 16 \times 16}{17 \times 17 \times 17}=x \quad \Rightarrow \quad x=₹ 4096
\end{aligned}
$$

Principal $=₹ 4096$
2. $P=2000$, C.I. $=163.20, R=4 \%, n=$?
$A=P+$ C.I. $=2000+163.20=2163.20$

$$
\begin{aligned}
A & =P\left(1+\frac{R}{100}\right)^{n} \\
2163.20 & =2000\left(1+\frac{4}{100}\right)^{n} \\
\frac{2163.20}{2000} & =\left(\frac{26}{25}\right)^{n} \\
\frac{676}{625} & =\left(\frac{26}{25}\right)^{n} \Rightarrow\left(\frac{26}{25}\right)^{2}=\left(\frac{26}{25}\right)^{n}
\end{aligned}
$$

$$
\Rightarrow \quad n=2 \text { years }
$$

3. $P=₹ x, R=10 \%, n=3$ years, C.I. $=₹ 331$,

Amount $=P+$ C.I. $=₹(x+331)$

$$
\begin{aligned}
A & =P\left(1+\frac{R}{100}\right)^{n} \\
x+331 & =x\left(1+\frac{10}{100}\right)^{3} \\
x+331 & =x \times \frac{11 \times 11 \times 11}{10 \times 10 \times 10}
\end{aligned}
$$

$1000 x+331000=1331 x, \quad 331000=(1331-1000) x$, $331000=331 x, x=₹ 1000$
Principal = ₹ 1000
4., 5., 6., 7. Do yourself.
8. $P=₹ 1000, A=₹ 2000, n=5 \times 2$ years, $R=\frac{x}{2} \%$

$$
\begin{aligned}
A & =P\left(1+\frac{R}{100}\right)^{n} \\
2000 & =1000\left(1+\frac{x}{2 \times 100}\right)^{10} \\
\frac{2000}{1000} & =\left(1+\frac{x}{200}\right)^{10} \\
2^{\frac{1}{10}} & =1+\frac{x}{200} \\
1.072-1 & =\frac{x}{200}, \\
0.072 & =\frac{x}{200} \\
x & =200 \times 0.072=14.4 \% \\
\text { Rate } & =\mathbf{1 4 . 4 \%}
\end{aligned}
$$

9. Let the principal $=₹ x$ and Rate $=R$

Case I

$$
\begin{align*}
& \text { S.I. }=\frac{P \times R \times T}{100} \\
& 200=\frac{x \times R \times 2}{100} \tag{i}
\end{align*}
$$

Case II, \quad Principal $=₹ x$ and Rate $=R$
C.I. $=₹ 210$, Amount $=$ C.I. $+P=₹(210+x)$

$$
\begin{align*}
A & =P\left(1+\frac{R}{100}\right)^{n} \\
210+x & =x\left(1+\frac{R}{100}\right)^{2} \tag{ii}
\end{align*}
$$

From equations (ii) and (i), $20000=2 x R \Rightarrow x=\frac{10000}{R}$,

$$
\begin{aligned}
210+\frac{10000}{R} & =\frac{10000}{R}\left(1+\frac{R}{100}\right)^{2} \\
\frac{210 R+10000}{R} & =\frac{10000}{R}\left(1+\frac{R}{100}\right)^{2} \\
210 R+10000 & =10000\left(1+\frac{R^{2}}{10000}+\frac{2 R}{100}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 210 R+10000=10000+\frac{10000 R^{2}}{10000}+\frac{2 R \times 10000}{100} \\
& 210 R=R^{2}+200 R, \quad 210 R-200 R=R^{2}, \\
& 10 R=R^{2} \Rightarrow R=\mathbf{1 0 \%}, \quad 200=\frac{x \times 10 \times 2}{100} \\
& \frac{200 \times 100}{2 \times 10}=x \Rightarrow x=₹ 1000
\end{aligned}
$$

Rate $\mathbf{1 0 \%}$ and Principal $=₹ \mathbf{1 0 0 0}$
10. Do yourself.

EXERCISE 11.5

1. Value of boat after 2 years $=₹ 16,000\left(1-\frac{5}{100}\right)^{2}$

$$
\begin{aligned}
& =₹ 16,000\left(\frac{19}{20}\right)^{2} \\
& =16,000 \times \frac{19}{20} \times \frac{19}{20}=₹ \mathbf{1 4 , 4 4 0}
\end{aligned}
$$

2. The present value of flat $=₹ 100000$

$$
\begin{aligned}
\text { Cost after } 3 \text { years } & =P\left(1-\frac{R}{100}\right)^{n} \\
& =100000\left(1-\frac{10}{100}\right)^{3} \\
& =100000 \times\left(\frac{9}{10}\right)^{3} \\
& =100000\left(\frac{9 \times 9 \times 9}{10 \times 10 \times 10}\right) \\
& =₹ 7 \mathbf{7 2 9 0 0}
\end{aligned}
$$

3. The present population of stray dogs $=1250$

$$
\begin{aligned}
\text { Population after } 3 \text { month } & =P\left(1-\frac{R}{100}\right)^{n}=1250\left(1-\frac{20}{100}\right)^{3} \\
& =1250 \times \frac{4 \times 4 \times 4}{5 \times 5 \times 5}=\mathbf{6 4 0} \text { dogs }
\end{aligned}
$$

4. Do yourself.
5. Present population of a city $=125000$

The birth rate $=3.3 \%$ and death rate $=1.3 \%$
Difference of rate $=(3.3-1.3) \%=2 \%$
Population after 3 years $=125000\left(1+\frac{2}{100}\right)^{3}$

$$
\begin{aligned}
& =125000 \times \frac{51 \times 51 \times 51}{50 \times 50 \times 50} \\
& =\mathbf{1 3 2 6 5 1}
\end{aligned}
$$

6. Total Amount $=40000 \times\left(1+\frac{5}{100}\right)\left(1+\frac{10}{100}\right)\left(1+\frac{15}{100}\right)$

$$
=40000 \times \frac{21}{20} \times \frac{11}{10} \times \frac{23}{20}=₹ 53130
$$

Total Profit $=$ Amount - Principal $=53130-40000=₹ \mathbf{1 3 1 3 0}$
7., 8. Do yourself.
11. Population of Pakistan in $1980=7.95 \times 10^{7}$

Population after 3 years $=8.65 \times 10^{7}$
$8.65 \times 10^{7}=7.95 \times 10^{7}\left\{1+\frac{R}{100}\right\}^{3}, \frac{8.65 \times 10^{7}}{7.95 \times 10^{7}}=\left\{1+\frac{R}{100}\right\}^{3}$

$$
\left(\frac{8.65}{7.95}\right)^{1 / 3}=\left(1+\frac{R}{100}\right)
$$

$1.02853=1+\frac{R}{100}, \quad 0.02853=\frac{R}{100} \Rightarrow R=\mathbf{2 . 8 5 3} \%$

12. Direct and Inverse Variations

EXERCISE 12.1

3. Let the commission will be x

It is a case of direct variation
Ration of number of money $=$ Ration of number of commission

$$
\begin{aligned}
1000: 100 & :: 73: x \\
x & =\frac{100 \times 73}{1000}=₹ 7.30
\end{aligned}
$$

4. Let the number of bottles of soft drink be x

It is a case of direct variation
Then,
Ratio of number of children $=$ Ratio of number of bottles

$$
\begin{aligned}
5: 40 & :: 8: x \\
5 \times x & =40 \times 8 \\
x & =\frac{40 \times 8}{5} \\
x & =\mathbf{6 4} \text { bottles }
\end{aligned}
$$

The number of bottles 64 would be served for 40 children.
5. Let the number of stamps bought for ₹ 36 be x It is a case of direct variation Ratio of the cost of stamps in Rupees $=$ Ratio of number of the stamp

$$
\begin{aligned}
18: 36 & :: 15: x \\
\frac{18}{36} & =\frac{15}{x} \\
x \times 18 & =15 \times 36 \\
x & =\frac{15 \times 36}{18} \\
x & =\mathbf{3 0} \text { stamps }
\end{aligned}
$$

The number of stamps that can be bought for $₹ 36$ is 30 .
6. Let the number of tools be x

It is a case of direct variation
Ratio of number of hours $=$ Ratio of number of tools

$$
\begin{aligned}
5: 20 & :: 120: x \\
5 \times x & =20 \times 120 \\
x & =\frac{20 \times 120}{5} \\
x & =\mathbf{4 8 0} \text { tools }
\end{aligned}
$$

Thus, the number of tools cuts by machine 480 tools in 20 hours.
7. Let the thickness of sheet be $x \mathrm{~cm}$

It is a case of direct variation
Then,
Ratio of number of sheets $=$ Ratio of thickness of the sheets

$$
\begin{aligned}
500: 275 & :: 3.5: x \\
500 \times x & =3.5 \times 275 \\
x & =\frac{35 \times 275}{500 \times 10} \\
x & =\frac{35 \times 275}{500 \times 10} \\
& =\frac{35 \times 55}{1000} \\
x & =\mathbf{1 . 9 2 5} \mathbf{~ c m}
\end{aligned}
$$

So, thickness of 275 sheets is 1.925 cm .
8., 9., 10. Do yourself.

EXERCISE 12.2

4. Let the number of hours be x

Ratio of number of pumps $=$ Inverse ratio of number of hours

$$
\begin{aligned}
20: 45 & :: x: 12 \\
20 \times 12 & =x \times 45 \\
x & =\frac{20 \times 12}{45} \\
x & =\frac{16}{3} \\
x & =\mathbf{5} \frac{\mathbf{1}}{\mathbf{3}} \text { hours }
\end{aligned}
$$

Required number of hours will be $5 \frac{1}{3}$ hours for 45 pumps to do the same work.
5. Let the required speed be $x \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
\text { Ratio of speed } & =\text { inverse ratio of time taken } \\
12: x & : \\
12 \times 20 & =x \times 15 \\
x & =\frac{12 \times 20}{15} \\
x & =\mathbf{1 6} \mathbf{~ k m} / \mathbf{h}
\end{aligned}
$$

Hence, Shalu's average speed should be $16 \mathrm{~km} / \mathrm{h}$.
6. Let x persons are needed for the construction of the building in 24
days
Then,

$$
\begin{aligned}
& \text { Ratio of days } \\
& =\text { inverse ratio of persons. } \\
& 40: 24:: x: 1800 \\
& 40 \times 1800
\end{aligned}=x \times 24, \begin{aligned}
x & =\frac{40 \times 1800}{24} \\
x & =\mathbf{3 0 0 0} \text { persons }
\end{aligned}
$$

Needed persons are 3000 for the construction of the building in 24 days.
7., 8., 9. Do yourself.
10. Let the number of days be x

Ratio of cows $=$ Inverse ratio of the days.

$$
\begin{aligned}
50: 60 & : x: 15 \\
50 \times 15 & =x \times 60 \\
x & =\frac{50 \times 15}{60}
\end{aligned}
$$

$$
x=\frac{25}{2}=12 \frac{1}{2} \text { days. }
$$

The required days will be $\mathbf{1 2} \frac{\mathbf{1}}{\mathbf{2}}$.

Let's Recall

2. (c) Let 15 men do it in x days.

Ratio of the number of men = Inverse ratio of the number of days

$$
\begin{aligned}
36: 15:: x: 25 & \\
36 \times 25 & =x \times 15 \\
x & =\frac{36 \times 25}{15} \\
x & =\mathbf{6 0} \text { days }
\end{aligned}
$$

Hence, 15 men can finish the work in 60 days.
3. (a) Number of persons in second situation $=500+300=800$

Let the food lasts for x days in the new situation
Ratio of persons $=$ Inverse ratio of corresponding number of days

$$
\begin{aligned}
500: 800 & :: x: 24 \\
500 \times 24 & =x \times 800 \\
x & =\frac{500 \times 24}{800} \\
x & =\frac{5 \times 24}{8} \\
x & =\mathbf{1 5} \text { days }
\end{aligned}
$$

Hence, the food will last for 15 days.

Unit-IV : Geometry

13.

Understanding
 Quadrilaterals

EXERCISE 13

4. $\angle A+\angle B+\angle C+\angle D=360^{\circ}$,
$65^{\circ}+65^{\circ}+\angle C+\angle D=360^{\circ}$,
$130^{\circ}+\angle C+\angle D=360^{\circ}$
$\angle C+\angle D=230^{\circ}, \angle C=\angle D ; \quad \therefore$ Each angle $=\mathbf{1 1 5}^{\circ}$
5. Let the angles be $2 x, 3 x, 5 x$ and $8 x, 2 x+3 x+5 x+8 x=360^{\circ}$, $18 x^{\circ}=360^{\circ}$

$$
\begin{aligned}
& x=\frac{360^{\circ}}{18}=20^{\circ}, 2 \times 20^{\circ}=\mathbf{4 0}^{\circ}, 3 \times 20^{\circ}=\mathbf{6 0}^{\circ}, 5 \times 20^{\circ}=\mathbf{1 0 0}^{\circ}, \\
& 8 \times 20^{\circ}=\mathbf{1 6 0}^{\circ}
\end{aligned}
$$

6. Perimeter of Parallelogram $=$ Sum of four sides

$$
=7+7+10+10=34 \mathrm{~cm}
$$

7. Let two adjacent angles be x and y

$$
\begin{aligned}
& x-y=30^{\circ}, \quad x+y=180^{\circ} \\
& x+y=180^{\circ}
\end{aligned}
$$

on adding

$$
\begin{aligned}
x-y & =30^{\circ} \\
\hline 2 x & =210^{\circ} \\
x & =105^{\circ} \\
105^{\circ}+y & =180^{\circ} \\
y & =75^{\circ}
\end{aligned}
$$

Angles $105^{\circ}, 75^{\circ}, 105^{\circ}, 75^{\circ}$
8., 9., 10. Do yourself.
11. Let the length and breadth of rectangle are $3 x$ and $2 x$ respectively, then
Perimeter of rectangle $=2 \times(l+b)$
$20=2 \times(3 x+2 x)$
$20=2 \times 5 x$
$20=10 x \Rightarrow x=2$
Length $=3 \times 2=6 \mathbf{c m}$
Breadth $=2 \times 2=4 \mathrm{~cm}$

Unit-V : Mensuration
16. Areas of Rectilinear Figures

EXERCISE 16.1

1.

$$
\text { Area of a rectangle }=\text { length } \times \text { breadth }
$$

$98=14 \times b$

$$
b=\frac{98}{14}=7 \mathrm{~cm}
$$

Perimeter of rectangle $=2 \times$ (length + breadth $)$

$$
\begin{aligned}
& =2 \times(14+7) \\
& =2 \times(21) \\
& =42 \mathrm{~cm}
\end{aligned}
$$

2. Area of rectangular lawn $A B C D$

$$
\begin{aligned}
& =l \times b \\
& =60 \times 30 \\
& =1800 \mathrm{~m}^{2}
\end{aligned}
$$

Area of rectangular lawn with 2 m wide path

$$
\begin{aligned}
& =l \times b \\
& =64 \times 34 \\
& =2176 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\text { Area of path }=\text { Area of } E F G H-\text { Area of } A B C D
$$

$$
=2176-1800=\mathbf{3 7 6} \mathbf{m}^{\mathbf{2}}
$$

3.

$$
\begin{aligned}
\text { Area of square } & =(\text { side })^{2} \\
729 & =(\text { side })^{2} \\
(\text { side })^{2} & =(27)^{2} \\
\text { Side } & =27 \mathrm{~m} \\
\text { Area of a wall } & =\text { length } \times \text { bradth } \\
& =5.76 \mathrm{~m} \times 3.1 \mathrm{~m} \\
& =576 \mathrm{~cm} \times 310 \mathrm{~cm} \\
& =178560 \mathrm{~cm} \\
\text { Area of a rectangular tiles } & =\text { length } \times \text { breadth } \\
& =24 \times 10=240 \mathrm{~cm} \\
\text { No. of tiles } & =\frac{\text { Area of wall }}{\text { Area of tiles }} \\
& =\frac{178560}{240}=744
\end{aligned}
$$

4.

$$
\text { Total cost of tiles }=744 \times 1.50=₹ \mathbf{1 1 1 6}
$$

5. Altitude of the rhombus $=\frac{\text { Area of rhombus }}{\text { Base }}$

$$
=\frac{10.2 \mathrm{~cm}^{2}}{6}=1.7 \mathrm{~cm}
$$

6. Perimeter of rhombus $=$ Sum of four sides, $28=4 \times a \Rightarrow a=7 \mathrm{~cm}$

Area of rhombus $=$ Base \times Altitude,

$$
\begin{aligned}
28 & =7 \times h \\
4 & =h \Rightarrow h=4 \mathrm{~cm}
\end{aligned}
$$

7. Area of trapezium $A B C D=$ Area of rectangle $A E C D+$ Area of triangle $C E B$,

$$
A B=8 \mathrm{~m}, \mathrm{DC}=5 \mathrm{~m},
$$

$$
B E=A B-D C=(8-5)=3 \mathrm{~m}, \quad C E^{2}=C B^{2}-E B^{2}
$$

$$
=5^{2}-3^{2} \Rightarrow C E=\sqrt{25-9}, C E=4 \mathrm{~m}
$$

$$
\text { Area of rectangle }=5 \times 4=20 \mathrm{~m}^{2},
$$

$$
\text { Area of triangle }=\frac{1}{2} \times 3 \times 4=6 \mathrm{~m}^{2}
$$

$$
\text { Total area }=(20+6) \mathrm{m}^{2}=\mathbf{2 6} \mathbf{m}^{\mathbf{2}}
$$

8. Let the one side $=x$

Then another side $=(x+8)$

$$
\begin{aligned}
& \text { Area of trapezium }=\frac{1}{2} \times(\text { Sum of parallel sides }) \\
& 91=\frac{1}{2} \times(x+x+8) \times 7, \\
& 91 \times 2=(2 x+8) \times 7, \\
& \frac{91 \times 2}{7}= \\
& =2(x+4), \Rightarrow 13=x+4 \Rightarrow x=\mathbf{9}
\end{aligned}
$$

Then another side $=(x+8)=9+8=\mathbf{1 7}$
Sides are $\mathbf{9} \mathbf{~ c m}$ and $17 \mathbf{c m}$.
10. Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
s & =\frac{10+10+12}{2}=16 \\
& =\sqrt{16(16-10)(16-10)(16-12)} \\
& =\sqrt{16 \times 6 \times 6 \times 4}=2 \times 4 \times 6=48 \\
48 & =\frac{1}{2} \times 12 \times h \Rightarrow 8=h ;
\end{aligned}
$$

Altitude $=\mathbf{8 ~ c m}$
Area of trapezium $=\frac{1}{2} \times($ Sum of Parallel sides $)$
\times Distance between Parallel sides

$$
=\frac{1}{2}(10+22) \times 8=\frac{1}{2} \times 32 \times 8=\mathbf{1 2 8} \mathbf{c m}^{2}
$$

11., 12. Do yourself.

EXERCISE 16.2

1. Area of equilateral triangle $=\frac{\sqrt{3}}{4}(\text { side })^{2}$

$$
=\frac{\sqrt{3}}{4} \times(12)^{2}
$$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times 12 \times 12=36 \sqrt{3} \mathrm{~cm}^{2} \\
& =62.35 \mathbf{c m}^{2} \text { (approx) }
\end{aligned}
$$

2. $a=12, b=10, c=10$

$$
s=\frac{12+10+10}{2}=\frac{32}{2}=16
$$

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{16(16-12)(16-10)(16-10)} \\
& =\sqrt{16 \times 4 \times 6 \times 6} \\
& =4 \times 2 \times 6 \\
& =\mathbf{4 8} \mathbf{~ c m}^{2}
\end{aligned}
$$

3. Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
s & =\frac{a+b+c}{2} \\
\Rightarrow \quad s & =\frac{10+24+26}{2}=\frac{60}{2}=30 \\
& =\sqrt{30(30-10)(30-24)(30-26)} \\
& =\sqrt{30 \times 20 \times 6 \times 4} \\
& =\sqrt{2 \times 3 \times 5 \times 2 \times 2 \times 5 \times 2 \times 3 \times 2 \times 2} \\
& =2 \times 2 \times 2 \times 3 \times 5 \\
& =\mathbf{1 2 0} \mathbf{~ c m}^{2}
\end{aligned}
$$

4., 5., 6. Do yourself.
7. $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}, A C=9 \mathrm{~cm}$ Area of parallelogram $A B C D=$ Area of $\triangle A C D+$ Area of $\triangle A B C$ Area of $\triangle A B C, A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}$,
 $C A=9 \mathrm{~cm}$,

$$
s=\frac{5+7+9}{2}=\frac{21}{2} \mathrm{~cm}
$$

$$
=\sqrt{\frac{21}{2} \times\left(\frac{21}{2}-5\right)\left(\frac{21}{2}-7\right)\left(\frac{21}{2}-9\right)}
$$

$$
=\sqrt{\frac{21}{2} \times \frac{11}{2} \times \frac{7}{2} \times \frac{3}{2}}
$$

$$
\begin{aligned}
& =\frac{21 \sqrt{11}}{4}=\frac{21}{4} \times 3.317 \\
& =\frac{69.657}{4}=17.414
\end{aligned}
$$

Area of $\triangle A B C+\triangle A D C=17.414 \times 2=\mathbf{3 4 . 8 2} \mathbf{~ c m}^{2}$
8. Do yourself.
9. Area of rhombus = Area of $\triangle A B C+$ Area of $\triangle A C D$

Area of $\triangle A B C, A B=25 \mathrm{~m}$,

$$
\begin{aligned}
B C & =25 \mathrm{~m}, A C=48 \mathrm{~m} \\
s & =\frac{25+25+48}{2}=\frac{98}{2}=49 \\
& =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{49(49-25)(49-25)(49-48)} \\
& =\sqrt{49 \times 24 \times 24 \times 1}=7 \times 24=168
\end{aligned}
$$

Area of rhombus $=2 \times 168=\mathbf{3 3 6} \mathbf{~ m}^{\mathbf{2}}$
10. Altitude $=A D$

$$
\begin{aligned}
s & =\frac{25+56+39}{2} \\
& =\frac{120}{2}=60 \\
& =\sqrt{60(60-25)(60-56)(60-39)} \\
& =\sqrt{60 \times 35 \times 4 \times 21} \\
& =\sqrt{2 \times 2 \times 3 \times 5 \times 5 \times 7 \times 2 \times 2 \times 7 \times 3} \\
& =2 \times 5 \times 2 \times 7 \times 3 \\
& =10 \times 42=420 \\
\text { Area of triangle } & =\frac{1}{2} \times \text { Base } \times \text { Altitude } \\
420 & =\frac{1}{2} \times 56 \times h \\
\Rightarrow \quad \frac{420 \times 2}{56} & =h \\
h & =\mathbf{1 5} \mathbf{~ c m}
\end{aligned}
$$

EXERCISE 16.3

1. Area of field $=$ Area $(\triangle A G B)+$ Area (trap GBHI) + Area ($\triangle C I D)$ + Area $(\triangle D E J)+$ Area (trap JEFH) + Area ($\triangle F A H$)
(1) Area $=\frac{1}{2} \times A G \times G B$

$$
=\frac{1}{2} \times 110 \times 10=550 \mathrm{~m}^{2}
$$

(2) Area $=\frac{1}{2} \times(I C+G B) \times I G$

$$
\begin{aligned}
& =\frac{1}{2} \times(50+10) \times 210 \\
& =\frac{1}{2} \times 60 \times 210=6300 \mathrm{~m}^{2}
\end{aligned}
$$

(3) Area $=\frac{1}{2} \times I C \times I D=\frac{1}{2} \times 50 \times 230$

$$
=25 \times 230=5750 \mathrm{~m}^{2}
$$

(4) Area $=\frac{1}{2} \times J E \times D J=\frac{1}{2} \times 60 \times 140=4200 \mathrm{~m}^{2}$
(5) Area $=\frac{1}{2} \times(E J+F H) \times J H$

$$
=\frac{1}{2} \times(60+20) \times 210=\frac{1}{2} \times 80 \times 210=8400 \mathrm{~m}^{2}
$$

(6) Area $=\frac{1}{2} \times F H \times A H=\frac{1}{2} \times 20 \times 200=2000 \mathrm{~m}^{2}$

Total area $(550+6300+5750+4200+8400+2000) \mathrm{m}^{2}$

$$
=27200 \mathrm{~m}^{2}
$$

2., 3., 4. Do yourself.
5. Area of field $=$ Area $(\triangle A P H)+$ Area $(\operatorname{tra} H P Q J)+$ Area $(\operatorname{tra} J Q R B)+$ Area $(\triangle B S K)+$ Area (tra SKIT) + Area ($\triangle T I A$)
(1) Area $=\frac{1}{2} \times A H \times H P$

$$
=\frac{1}{2} \times 60 \times 30=900 \mathrm{~m}^{2}
$$

(2) Area $=\frac{1}{2} \times(H P+J Q) \times H J$

$$
=\frac{1}{2} \times(30+40) \times 60
$$

$$
=\frac{1}{2} \times 70 \times 60=2100 \mathrm{~m}^{2}
$$

(3) Area $=\frac{1}{2} \times(B R+J Q) \times B J$

$$
\begin{aligned}
& =\frac{1}{2} \times(50+40) \times 80 \\
& =\frac{1}{2} \times 90 \times 80=3600 \mathrm{~m}^{2}
\end{aligned}
$$

(4) Area $=\frac{1}{2} \times B K \times S K=\frac{1}{2} \times 40 \times 20=400 \mathrm{~m}^{2}$
(5) Area $=\frac{1}{2} \times(S K+T I) \times I K$

$$
=\frac{1}{2} \times(20+40) \times 80=\frac{1}{2} \times 60 \times 80=2400 \mathrm{~m}^{2}
$$

(6) Area $=\frac{1}{2} \times T I \times A I=\frac{1}{2} \times 40 \times 80=1600 \mathrm{~m}^{2}$

$$
\begin{aligned}
\text { Total Area } & =(900+2100+3600+400+2400+1600) \mathrm{m}^{2} \\
& =\mathbf{1 1 0 0 0} \mathbf{m}^{\mathbf{2}}
\end{aligned}
$$

Let's Recall

2. (b) $(2 \times 10)+(3 \times 8)-(2 \times 3)$

$$
=20+24-6=\mathbf{3 8}
$$

3. (d) Area of triangle with base $x=$ Area of a square of side x

$$
\begin{aligned}
\frac{1}{2} \times x \times h & =x^{2} \\
\frac{1}{2} h & =x \Rightarrow h=2 x
\end{aligned}
$$

Hence, the altitude of the triangle is $2 x$
4. (b) $1: 2$ from the figure

$$
\begin{aligned}
\text { i.e., } & =\frac{x^{2}}{(\sqrt{2} x)^{2}}=\left[\frac{x^{2}}{2 x^{2}}\right] \\
& =\frac{1}{2} \\
\text { Ratio } & =\mathbf{1}: \mathbf{2}
\end{aligned}
$$

5. (b) Other leg $=\sqrt{(5)^{2}-(2)^{2}}$

$$
\begin{aligned}
& =\sqrt{25-4} \\
& =\sqrt{\mathbf{2 1}}
\end{aligned}
$$

Circumference and Area of a Circle

EXERCISE 17.1

1. (i) Circumference $=2 \pi r$
$7.7=2 \times \frac{22}{7} \times r \Rightarrow \frac{77}{10}=2 \times \frac{22}{7} \times r, r=\frac{77 \times 7}{2 \times 10 \times 22}, r=1.225 \mathrm{~m}$ $d=2 r=2 \times 1.225=\mathbf{2 . 4 5} \mathbf{~ m}$
(ii), (iii) Do yourself.
2. (i) Circumference of circle $=2 \pi r$

$$
=2 \times \frac{22}{7} \times 7=44 \mathrm{~cm} \quad\left[\because r=\frac{14}{2}=7 \mathrm{~cm}\right]
$$

(ii), (iii) Do yourself.
3. (i) Circumference of circle $=2 \pi r=2 \times \frac{22}{7} \times 3.5=22 \mathrm{~cm}$
(ii), (iii) Do yourself.
4. (i) Circumference of circle $=2 \pi r$

$$
6.28=2 \times 3.141 \times r, \frac{6.28}{2 \times 3.14}=r \Rightarrow r=1 \mathrm{~cm}
$$

Diameter $=2 r=2 \times 1=2 \mathrm{~cm}$
(ii), (iii) Do yourself.
5. (i) Circumference of circle $=2 \pi r$

$$
\begin{aligned}
26.4 & =2 \times \frac{22}{7} \times r \\
26.4 \times 7 & =2 \times 22 \times r \\
r & =\frac{26.4 \times 7}{2 \times 22}=4.2 \mathbf{c m}
\end{aligned}
$$

(ii), (iii) Do yourself.
6. See example 4.
7. Perimeter of equilateral triangle $=$ Circumference of circle

$$
\begin{aligned}
3 \times 6.6 & =2 \times \frac{22}{7} \times r \\
\frac{3 \times 66 \times 7}{10 \times 2 \times 22} & =r \\
\Rightarrow \quad r & =3.15 \mathrm{~cm} \\
\text { Diameter } & =2 r=2 \times 3.15 \\
& =6.3 \mathrm{~cm}
\end{aligned}
$$

8. Radius of wheel $=35 \mathrm{~cm}$, One complete round $=2 \pi r$

24 complete round $=24 \times 2 \pi r$

$$
\begin{aligned}
& =24 \times 2 \times \frac{22}{7} \times 35 \\
& =10 \times 22 \times 24=5280 \mathrm{~cm}
\end{aligned}
$$

9. Do yourself
10. Circumference of pond $=2 \pi r$

$$
\begin{aligned}
66 \times 400 & =2 \times \frac{22}{7} \times x, \frac{66 \times 400 \times 7}{2 \times 22}=r \\
\Rightarrow \quad r & =4200 \mathrm{~cm} \\
\text { Diameter } & =2 r=2 \times 4200=\mathbf{8 4 0 0} \mathbf{~ c m}
\end{aligned}
$$

EXERCISE 17.2

1. (i) Circumference of circle $=2 \pi r, 31.4=2 \times 3.14 \times r$,

$$
\begin{aligned}
\frac{31.4}{2 \times 3.14} & =r \Rightarrow r=5 \mathrm{~m} \\
\text { Area of circle } & =\pi r^{2}=3.14 \times 5 \times 5=78.50 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) and (iii) Do yourself.
2. (i) Area of circle $=\pi r^{2}=\frac{22}{7} \times 3.5 \times 3.5=38.5 \mathrm{~cm}^{2}$
(ii) and (iii) Do yourself.
3. (i) Diameter $=2 \times$ Radius

$$
4.2=2 \times \text { Radius } \Rightarrow r=2.1 \mathrm{~cm} \text {, }
$$

Area of circle $=\pi r^{2}=\frac{22}{7} \times 2.1 \times 2.1$

$$
=\frac{22}{7} \times \frac{21 \times 21}{100}=\mathbf{1 3 . 8 6} \mathbf{~ c m}^{2}
$$

(ii) and (iii) Do yourself.
4. Area of circle $=\pi r^{2}=\frac{22}{7} \times \frac{5}{2} \times \frac{5}{2}=19.625 \mathbf{~ c m}^{2}$
5. Area of circle $=\pi r^{2}, \quad 154=\frac{22}{7} \times r^{2}, \quad r^{2}=\frac{154 \times 7}{22} \Rightarrow r=7$

Circumference $=2 \pi r=2 \times \frac{22}{7} \times 7=44 \mathrm{~m}$
6. (i) Area of circle $=\pi r^{2}, \pi=\pi r^{2}, r^{2}=1 \Rightarrow r=\mathbf{1} \mathbf{~ c m}$
(ii) and (iii) Do yourself.
7. Perimeter of square $=4 \times a, 44=4 \times a \Rightarrow a=11 \mathrm{~cm}$,

Circumference of circle $=2 \pi r$

$$
44=2 \times \frac{22}{7} \times r, r=7 \mathrm{~cm}
$$

Area of square $=\operatorname{side}^{2}=11^{2}=121 \mathrm{~cm}^{2}$, Area of circle

$$
\begin{aligned}
& =\pi r^{2}=\frac{22}{7} \times 7 \times 7 \\
& =154 \mathrm{~cm}^{2} \\
\text { Circle, } 154 & -121=\mathbf{3 3} \mathbf{c m}^{2}
\end{aligned}
$$

8. Area of a face washer $=\pi R_{1}^{2}-\pi R_{2}^{2}=\pi\left\{4^{2}-2^{2}\right\}=\pi \times 12$

$$
=\frac{22}{7} \times 12=\mathbf{3 7 . 7 1} \mathbf{c m}^{2}
$$

9. Area of rectangular sheet $=36 \times 24=864 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { Area of each buttons }=\pi r^{2}=\pi \times \frac{3}{2} \times \frac{3}{2} \\
& \begin{aligned}
\text { Area of } 64 \text { button } & =\frac{9 \pi \times 64}{4}=16 \times 9 \pi \\
& =144 \pi \\
& =452.16 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

$$
\text { Remaining Area }=864-452.16
$$

$$
=411.84 \mathrm{~cm}^{2}
$$

10., 11. Do yourself.

EXERCISE 17.3

1. (i) Area of segment $A x B$
$=$ Area of sector $O A x B-$ Area of $\triangle O A B$
Area of sector $O A x B=\frac{90}{360} \times \frac{22}{7} \times 14 \times 14$

$$
=154 \mathrm{~cm}^{2}
$$

Area of right triangle $=\frac{1}{2} \times 14 \times 14$

$$
=98 \mathrm{~cm}^{2}
$$

Area of segment $A x B=154-98=\mathbf{5 6} \mathbf{c m}^{2}$
(ii), (iii) Do yourself.
2. Area of disc $=\pi r^{2}=\pi 2^{2}=4 \pi$

$$
\text { Area of sector }=\pi r^{2} \times \frac{x}{360}=\pi \times 4 \times \frac{45}{360}=\frac{\pi}{2}
$$

Remaining part of the disc $=4 \pi-\frac{\pi}{2}=\frac{7 \pi}{2}=\frac{7 \times 22}{7 \times 2}=11 \mathbf{c m}^{2}$
3. (i) Length of $\operatorname{Arc}=\frac{2 \pi r x}{360}=\frac{2 \times 22 \times 2.8}{7} \times \frac{90}{360}$

$$
\begin{aligned}
& =\frac{2 \times 22 \times 28 \times 1}{4 \times 7 \times 10} \\
& =4.4 \mathrm{~cm}
\end{aligned}
$$

(ii), (iii) Do yourself.
4. (i) Area of sector $=\frac{\pi r^{2} \times x}{360}=\frac{22}{7} \times 3.5 \times 3.5 \times \frac{60}{360}$

$$
=\frac{22 \times 35 \times 35}{7 \times 100 \times 6} \mathrm{~cm}^{2}=\mathbf{6} \frac{\mathbf{5}}{\mathbf{1 2}} \mathbf{c m}^{2}
$$

(ii), (iii) Do yourself.
5. Do yourself.
6. Length of $\operatorname{Arc}=\frac{2 \pi r x}{360}, \quad 22=\frac{2 \pi r \times 18}{360} \Rightarrow 2 \pi r=440 \mathrm{~m}$ Circumference of circle $=440 \mathrm{~m}$
7. Area of sector $=\frac{\pi r^{2} \times 36}{360}, 3.85=\frac{\pi \times r^{2} \times 1}{10}$,

$$
r^{2}=\frac{3.85 \times 10}{\pi} \Rightarrow r=\frac{7}{2}
$$

Length of Arc $=\frac{2 \pi r \times x}{360}=2 \times \frac{22}{7} \times 7 \times \frac{18}{360}=\mathbf{2 . 2} \mathbf{~ c m}$
8. Do yourself.
9. In a equilateral triangle every angle be 60°

Area of sector $=\pi r^{2} \times \frac{x}{360}$

$$
\begin{aligned}
& =3.14 \times 10 \times 10 \times \frac{60}{360} \\
& =\frac{314}{6}=\mathbf{5 2 . 3 8} \mathbf{~ m}^{2}
\end{aligned}
$$

10. Do yourself.

Let's Recall

1. (b) $2 \pi r_{1}=176$

$$
r_{1}=\frac{176}{2 \pi}
$$

$$
r_{1}=\frac{176 \times 7}{2 \times 22}
$$

$$
r_{1}=28 \mathrm{~m}
$$

$$
\begin{aligned}
2 \pi r_{2} & =132 \\
r_{2} & =\frac{132}{2 \pi} \\
r_{2} & =\frac{132 \times 7}{2 \times 22} \\
& =21 \mathrm{~m}
\end{aligned}
$$

Difference between their radii $\left(r_{1}-r_{2}\right)=28 \mathrm{~m}-21 \mathrm{~m}=7 \mathbf{m}$ Option (b) is right.
2. (a) If the radius of a circle is increased two times

Then the circumference of the circle will increase

$$
\begin{aligned}
& r_{1}=r \text { then } \Rightarrow \frac{2 \pi r_{1}}{2 \pi r_{2}}=\frac{2 \pi r}{2 \pi \times 2 r}=\frac{2 \pi r}{2(2 \pi r)} \\
& r_{2}=\mathbf{2 r}
\end{aligned}
$$

So, two times the original value option (a) is right.
3. (a) $\pi r^{2}=2464$

$$
\begin{aligned}
r^{2} & =\frac{2464}{\pi} \\
& =\frac{2464 \times 7}{22} \\
\Rightarrow \quad r^{2} & =112 \times 7 \\
r^{2} & =784 \\
r^{2} & =\sqrt{784} \\
& =\sqrt{28 \times 28}, \\
& =\sqrt{28^{2}}=\mathbf{2 8} \mathbf{~ m}
\end{aligned}
$$

Hence, the length of the rope is 28 m .
4. (c) $2 \pi r \times 1000=88 \times 1000 \mathrm{~m}$
$[\because 1 \mathrm{~km}=1000 \mathrm{~m}]$

$$
\begin{aligned}
r & =\frac{88 \times 1000}{2 \pi \times 1000} \mathrm{~m} \\
r & =\frac{88 \times 1000 \times 7}{2 \times 22 \times 1000} \mathrm{~m} \\
r & =14 \mathrm{~m}
\end{aligned}
$$

The diameter of the wheel $=2 r=2 \times 14 \mathrm{~m}=\mathbf{2 8} \mathbf{m}$

18.
 Volumes and Surface Areas of Solids

EXERCISE 18.1

2. (i) In given figure
$l=6 \mathrm{~cm}$

$$
b=8 \mathrm{~cm} \quad h=10 \mathrm{~cm}
$$

The volume of cuboid from given figure

$$
\begin{aligned}
& =l \times b \times h \\
& =6 \mathrm{~cm} \times 8 \mathrm{~cm} \times 10 \mathrm{~cm} \\
& =480 \mathrm{~cm}^{3}
\end{aligned}
$$

Surface area of cuboid from given figure

$$
\begin{aligned}
& =2[l b+b h+h l] \\
& =2[6 \mathrm{~cm} \times 8 \mathrm{~cm}+8 \mathrm{~cm}+10 \mathrm{~cm}+10 \mathrm{~cm} \times 6 \mathrm{~cm}] \\
& =2\left[48 \mathrm{~cm}^{2}+80 \mathrm{~cm}^{2}+60 \mathrm{~cm}^{2}\right] \\
& =2\left[188 \mathrm{~cm}^{2}\right] \\
& =376 \mathrm{~cm}^{2}
\end{aligned}
$$

Part (ii), (iii), (iv), (v) and (vi) Do yourself.
3. (i) Capacity $=l \times b \times h$

$$
\begin{aligned}
& =5.5 \mathrm{~m} \times 3.5 \mathrm{~m} \times 3.6 \mathrm{~m} \\
& =69.3 \mathrm{~m}^{3}
\end{aligned}
$$

(ii), (iii) and (iv) Do yourself.
4. The volume of rectangular tank whose sides are

$$
\begin{aligned}
\text { Length }(l) & =65 \mathrm{~cm} \\
\text { Width }(\mathrm{b}) & =40 \mathrm{~cm} \\
\text { Height }(h) & =54 \mathrm{~cm}
\end{aligned}
$$

Then,
Volume of rectangular tank $=l \times b \times h$

$$
\begin{aligned}
& =65 \mathrm{~cm} \times 40 \mathrm{~cm} \times 54 \mathrm{~cm} \\
& =140400 \mathrm{~cm}^{3}
\end{aligned}
$$

The number of glasses of sugarcane $=140400 \div 200=\mathbf{7 0 2}$
5. Capacity of water in water $\operatorname{tank}=4.8$ liters

$$
\begin{aligned}
& =4.8 \times 1000 \mathrm{~cm}^{3} \\
& =4800 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of water tank $=l \times b \times h$
$4800=20 \mathrm{~cm} \times 15 \mathrm{~cm} \times h$

$$
\frac{4800}{20 \times 15}=h
$$

$$
h=\frac{4800}{20 \times 15}
$$

$$
h=16 \mathrm{~cm}
$$

Total surface area of the cuboid $=2[l b+b h+h l]$

$$
\begin{aligned}
& =2[20 \mathrm{~cm} \times 15 \mathrm{~cm}+15 \mathrm{~cm} \times 16 \mathrm{~cm}+16 \mathrm{~cm} \\
& \left.=2\left[300 \mathrm{~cm}^{2}+240 \mathrm{~cm}^{2}+320 \mathrm{~cm}^{2}\right] \quad \times 20 \mathrm{~cm}\right] \\
& =2\left[860 \mathrm{~cm}^{2}\right] \\
& =\mathbf{1 7 2 0} \mathbf{c m}^{3}
\end{aligned}
$$

6. Given,

The volume of solid cube $=64 \mathrm{~cm}^{3}$

$$
(\text { side })^{3}=(4 \mathrm{~cm})^{3}
$$

$$
\text { side }=4 \mathrm{~cm}
$$

Then,
Total surface area of the solid $=6 \times(\text { side })^{2}$

$$
=6 \times(4 \mathrm{~cm})^{2}=96 \mathrm{~cm}^{2}
$$

7., 8. Do yourself.

EXERCISE 18.2

1. (i) Do yourself.
(ii) Volume of cylinder $=\pi r^{2} h=\frac{22}{7} \times 2.8 \times 2.8 \times 15$

$$
=\frac{22}{7} \times \frac{28 \times 28 \times 15}{100}=369.6 \mathrm{~m}^{3}
$$

2. (i) Volume of cylinder $=\pi r^{2} h=\frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times 20=6930 \mathrm{~cm}^{3}$
(ii) Do yourself.
3. Volume of cylinder $=\pi r^{2} h=154 \times 15=\mathbf{2 3 1 0} \mathbf{~ c m}^{\mathbf{3}}$
4. Circumference of the base of the cylinder, $132=2 \pi r$,

$$
\begin{array}{ll}
\Rightarrow & r=\frac{132 \times 7}{2 \times 22} \\
\Rightarrow & r=21 \mathrm{~cm}
\end{array}
$$

Volume of cylinder $=\pi r^{2} h=\frac{22}{7} \times 21 \times 21 \times 25=\mathbf{3 4 6 5 0} \mathbf{c m}^{3}$
5. First pack Volume $=$ Area of base \times Height $=5 \times 5 \times 12=300 \mathrm{~cm}^{3}$

Second pack Volume $=$ Area of base \times Height

$$
\begin{aligned}
& =\pi r^{2} h=\frac{22}{7} \times 3.5 \times 3.5 \times 10 \\
& =\frac{22}{7} \times \frac{35 \times 35}{100} \times 10=385 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\text { Difference }=385-300=\mathbf{8 5} \mathbf{c m}^{\mathbf{3}}
$$

6. Do yourself.
7. Volume of roof $=\frac{18 \times 16.5 \times 10}{100}=29.7 \mathrm{~cm}^{3}$

Volume of roof $=$ Volume of cylindrical tank

$$
\begin{aligned}
29.7 & =\pi \times 4 \times 4 \times h \\
29.7 & =3.14 \times 4 \times 4 \times h \\
h & =\frac{29.7}{3.14 \times 4 \times 4} \Rightarrow h=0.596 \mathrm{~m} \\
& =\mathbf{5 9 . 6} \mathbf{~ c m}
\end{aligned}
$$

8., 9. Do yourself.
10. Volume of cylinder $=$ Volume of wire

$$
\begin{aligned}
\pi r_{1}^{2} h_{1} & =\pi r_{2}^{2} h_{2} \\
\pi \times \frac{1}{2} \times \frac{1}{2} \times 5 & =\pi \times \frac{1}{20} \times \frac{1}{20} \times h \\
\frac{5}{4} & =\frac{h}{20 \times 20} \\
4 h & =20 \times 20 \times 5 \\
h & =\frac{20 \times 20 \times 5}{4} \\
\Rightarrow \quad h & =500 \mathrm{~cm} \\
& =\mathbf{5 ~ m}
\end{aligned}
$$

EXERCISE 18.3

1. Total surface area of cylinder $=2 \pi r(r+h)$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 5 \times(5+15) \\
& =2 \times \frac{22}{7} \times 5 \times 20 \\
& =\mathbf{6 2 8 . 5 7} \mathbf{c m}^{2}
\end{aligned}
$$

2. $2 \pi r=176 \mathrm{~cm}, h=100 \mathrm{~cm}$, circumference $=2 \times \frac{22}{7} \times r=176$

$$
r=\frac{176 \times 7}{2 \times 22} \Rightarrow r=28 \mathrm{~cm}
$$

Lateral surface area of cylinder $=2 \pi r h=176 \times 100$

$$
\begin{aligned}
& =17600 \mathrm{~cm}^{2} \\
& =\mathbf{1 . 7 6} \mathbf{~ m}^{2}
\end{aligned}
$$

3., 4. Do yourself.
5. $r=\frac{3.5}{2 m}, h=10 \mathrm{~m}$

$$
\begin{aligned}
\text { Curved surface area } & =2 \pi r h \\
& =2 \times \frac{22}{7} \times \frac{3.5}{2} \times 10 \\
& =2 \times \frac{22}{7} \times \frac{35}{2}=110 \mathrm{~m}^{2}
\end{aligned}
$$

The coat of plastering $=110 \times 4=₹ \mathbf{4 4 0}$
6. Total surface area of cylinder $=2 \pi r(r+h)$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 21 \times(100+21) \\
& =2 \times \frac{22}{7} \times 21 \times 121 \\
& =132 \times 121 \\
& =15972 \mathbf{c m}^{2}
\end{aligned}
$$

7., 8., 9. Do yourself.

EXERCISE 18.4

1. Volume of cone $=\frac{\pi r^{2} h}{3}=\frac{22}{7} \times \frac{6 \times 6 \times 8}{3}=\mathbf{3 0 1 . 7 1} \mathbf{~ c m}^{\mathbf{3}}$
2. Volume of cone $=\frac{\pi r^{2} h}{3}=\frac{314 \times 15}{3}=314 \times 5=1570 \mathbf{~ c m}^{3}$
3. $\frac{\pi r_{1}^{2} h_{1}}{3}=\pi r_{2}^{2} h_{2}$

$$
\begin{aligned}
\frac{\pi \times r^{2} \times h}{3} & =\pi r^{2} \times 5 \\
\frac{h}{3} & =5 \Rightarrow h=\mathbf{1 5} \mathbf{~ c m}
\end{aligned}
$$

4. Volume of cone $=\frac{\pi r^{2} h}{3}$

$$
48 \pi=\pi \times \frac{4 \times 4 \times h}{3}, \quad h=\frac{48 \times 3}{4 \times 4} \Rightarrow h=9 \mathrm{~cm}
$$

5. Do yourself.
6. $\frac{\pi r^{2} h}{3}=\frac{22 \times 2 \times 2 \times 5}{7 \times 3} \mathrm{~cm}^{3}=\mathbf{2 0 . 9 5} \mathrm{cm}^{3}$
7. Volume $=\frac{\pi r^{2} h}{3}=\frac{22 \times 5 \times 5 \times 12}{7 \times 3}$
$=314$ (approx)
8. Do yourself.

EXERCISE 18.5

2. $r=5, l=10 \mathrm{~cm}$

Lateral surface area $=\pi r l$

$$
\begin{aligned}
& =\frac{22 \times 5 \times 10}{7} \\
& =\mathbf{1 5 7 . 1 4} \mathbf{c m}^{2}
\end{aligned}
$$

3. Do yourself.
4. (i) Lateral surface area $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 5 \times 15 \\
& =\mathbf{2 3 5 . 7 1} \mathbf{c m}^{\mathbf{3}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Area of base } & =\pi r^{2} \\
& =\frac{22}{7} \times 5 \times 5 \\
& =\mathbf{7 8 . 5 7} \mathbf{~ c m}^{2}
\end{aligned}
$$

(iii) Total surface area $D=\pi r(r+l)$

$$
\begin{aligned}
& =\frac{22}{7} \times 5 \times(5+15) \\
& =\frac{22}{7} \times 20 \times 5 \\
& =\mathbf{3 1 4 . 2 8} \mathbf{c m}^{\mathbf{2}}
\end{aligned}
$$

5., 6. Do yourself.
7. $r=24 \mathrm{~m}, h=10 \mathrm{~m}, l=$?

$$
\begin{array}{rlrl}
l^{2} & =r^{2}+h^{2} \\
l^{2} & =24^{2}+10^{2} \\
l^{2} & =576+100 \\
\Rightarrow \quad & \quad l^{2} & =676 \\
\Rightarrow \quad l & l & =\mathbf{2 6} \mathbf{~ m}
\end{array}
$$

Area of lateral surface $=\pi r l=\frac{22}{7} \times 24 \times 26$
Total cost of canvas $=₹ \frac{22}{7} \times 24 \times 26 \times 15=₹ \mathbf{2 9 4 1 7 . 1 4}$
8. Volume of cone $=\frac{\pi r^{2} h}{3}$

$$
\begin{aligned}
1232 & =\frac{22}{7} \times \frac{14 \times 14}{3} \times h \\
\Rightarrow \quad \frac{1232 \times 7 \times 3}{22 \times 14 \times 14} & =h \\
h & =\frac{25872}{4312} \Rightarrow h=6 \mathrm{~cm} \\
l^{2} & =h^{2}+r^{2} \Rightarrow \quad l^{2}=6^{2}+14^{2} \\
l^{2} & =36+196, \quad l=\sqrt{232}
\end{aligned}
$$

Curved Surface $=\pi r l=\frac{22}{7} \times 14 \times \sqrt{232}=\frac{22 \times 14 \times 2 \sqrt{58}}{7}$ $=88 \sqrt{58} \mathrm{~cm}^{2}$
9. $l^{2}=h^{2}+r^{2}$
$l^{2}=(18)^{2}+\left(\frac{105}{2}\right)^{2}$
$l^{2}=3080.25 \Rightarrow l=\mathbf{5 5 . 5} \mathbf{m}$
Total canvas used $=2 \pi r h+\pi r l$

$$
\begin{aligned}
l & =\frac{22}{7} \times \frac{105}{2}\{2 \times 3+55.5\} \\
& =\frac{22}{7} \times \frac{105}{2} \times 61.5 \\
& =\mathbf{1 0 1 4 7 . 5} \mathbf{~ m}^{2}
\end{aligned}
$$

10. Do yourself.

EXERCISE 18.6

1. (i) Radius $=\frac{\text { Diameter }}{2}=\frac{14}{2}=7 \mathrm{~cm}$

Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7$

$$
=\frac{30184}{21}=\mathbf{1 4 3 7 . 3 3} \mathbf{c m}^{\mathbf{3}}
$$

(ii), (iii) Do yourself.
2. (i) Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times 2 \times 2 \times 2=\mathbf{3 3 . 5 2} \mathbf{~ c m}^{3}$
(ii), (iii) Do yourself.
3. Volume of hemisphere $=\frac{2}{3} \pi R^{3}=\frac{2}{3} \times \frac{22}{7} \times \frac{11.2}{2} \times \frac{11.2}{2} \times \frac{11.2}{2}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{22}{7} \times \frac{112 \times 112 \times 112}{1000 \times 8} \\
& =\frac{61816832}{168000} \\
& =\mathbf{3 6 7 . 9 6} \mathbf{c m}^{\mathbf{3}}
\end{aligned}
$$

4. When $r=r$, then, Volume of sphere $=\frac{4}{3} \pi r^{3}$, When $r=2 r$, then

Volume of sphere $=\frac{4}{3} \pi(2 r)^{3}$,
Volume of increased $\Rightarrow \frac{4}{3} \pi r^{3}: \frac{4}{3} \pi 8 r^{3}=\mathbf{8}$ times.
5. Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{22}{7} \times \frac{28 \times 28 \times 28}{10 \times 10 \times 10} \\
& =\frac{965888}{21000} \\
& =45.995 \mathrm{~m}^{3} \\
& =45.995 \times 1000 \mathrm{~L}=45995 \mathrm{~L}
\end{aligned}
$$

6., 7., 8. Do yourself.

EXERCISE 18.7

1. (i) Surface area of the sphere $=4 \pi r^{2}=4 \times \frac{22}{7} \times \frac{15 \times 15}{2 \times 2}$

$$
=707.14 \mathrm{~cm}^{2}
$$

(ii), (iii) Do yourself.
2. (i) Surface area of the sphere $=4 \pi r^{2}=4 \times \frac{22}{7} \times 12 \times 12$

$$
=1810.29 \mathrm{~cm}^{2}
$$

or \quad Take $\pi=3.14=4 \times 3.14 \times 12 \times 12$

$$
=1808.64 \mathrm{~cm}^{2}
$$

(ii), (iii) Do yourself.
3. Case I, Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times 7 \times 7=616 \mathrm{~cm}^{2}$

Case II, Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times 14 \times 14=2464 \mathrm{~cm}^{2}$
Ratio $=616: 2464=\mathbf{1}: 4$
4. Surface area of hemisphere $=2 \pi r^{2}=2 \times \frac{22}{7} \times \frac{10.5}{2} \times \frac{10.5}{2}$

$$
\begin{aligned}
& =\frac{2 \times 22 \times 105 \times 105}{7 \times 2 \times 2 \times 100} \\
& =\frac{2 \times 22 \times 105 \times 105}{2800} \\
& =\frac{485100}{2800} \\
& =173.25 \mathrm{~cm}^{2} \\
\text { Cost of painting } & =₹ \frac{173.25 \times 4}{100} \\
& =₹ \frac{693}{100} \\
& =₹ 6.93
\end{aligned}
$$

5., 6. , 7. Do yourself.
8. Surface area of sphere $=4 \pi r^{2}, 154=4 \times \frac{22}{7} \times r^{2}, r=3.5 \mathrm{~cm}$

$$
\begin{aligned}
\text { Volume of sphere } & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5 \\
& =\frac{4 \times 22 \times 35 \times 35 \times 5}{3 \times 1000} \mathrm{~cm}^{3} \\
& =\mathbf{1 7 9 . 6 7} \mathbf{c m}^{3}
\end{aligned}
$$

Let's Recall

2. (b) $\frac{\text { Volume of cylinder }}{\text { Volume of cone }}=\frac{\pi r^{2} h}{\frac{1}{3} \pi r^{2} h}=\frac{3 \pi r^{2} h}{\pi r^{2} h}=\frac{3}{1}$

Hence, the ratio of volume of cylinder and cone is $\mathbf{3} \mathbf{: 1}$.
3. (b) Volume of cube $=125 \mathrm{~cm}^{3}$

$$
a^{3}=(5)^{3}
$$

$$
a=5 \mathrm{~cm} \text { Where } a \text { is a side of cube }
$$

Then lateral surface area of a cube $=4 a^{2}$

$$
=4 \times(5)^{2}
$$

$$
=4 \times 25
$$

$$
=100 \mathrm{~cm}^{2}
$$

5. (d) $\frac{h_{1}}{h_{2}}=\frac{1}{2}$ then $\pi r_{1}{ }^{2} h_{1}=\pi r_{2}^{2} h_{2}$

$$
\begin{aligned}
\left(\frac{r_{1}}{r_{2}}\right) & =\sqrt{\frac{2}{1}}=\frac{\sqrt{2}}{1} \\
\left(\frac{r_{1}}{r_{2}}\right)^{2} & =\left(\frac{h_{2}}{h_{1}}\right) \\
\frac{r_{1}}{r_{2}} & =\frac{\sqrt{2}}{1} \\
r_{1}: r_{2} & =\sqrt{\mathbf{2}}: \mathbf{1}
\end{aligned}
$$

Notes

