

Foundation
Mathematics

Integers

Learning Target 1.1

1.

Second Number

| x | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -4 | 16 | 12 | 8 | 4 | 0 | -4 | -8 | -12 | -16 | |
| -3 | 12 | 9 | 6 | 3 | 0 | -3 | -6 | -9 | -12 | |

2. (i) Negative
(ii) Negative
(iii) Negative
(iv) Negative
3. (i) $2 \times(-15)=-(2 \times 15)=-\mathbf{3 0}$
(ii) $(-17) \times(-20)=+(17 \times 20)=\mathbf{3 4 0}$
(iii) $3 \times(-8) \times 5=-24 \times 5=-\mathbf{1 2 0}$
(iv) to (xii) Do yourself.
4. (i) $(1569 \times 887)-(569 \times 887) \Rightarrow 887 \times(1569-569)$

$$
=887 \times 1000=\mathbf{8 8 7 0 0 0}
$$

(ii) to (vi) Do yourself.
5. (i) $x \times(-1)=-40 \Rightarrow(-40) \times(-1)=-40$
(ii) to (iii) Do yourself.
6. (i) $(8+9) \times 10$ and $8+9 \times 10$
17×10 and $8+90$
$170>98$
So, $(8+9) \times 10>8+9 \times 10$
(ii) to (iii) Do yourself.
7. (i) $19 \times[7+(-3)]=19 \times 7+19 \times(-3)$

$$
\begin{aligned}
& \text { LHS. }=19 \times[7+(-3)]=19 \times[7-3] \\
& \quad=19 \times 4=76 \\
& \text { RHS. }=19 \times 7+19 \times(-3)=133-57=76
\end{aligned}
$$

8. $a \times(-1)=-30 \Rightarrow a=(-1) \times(-30)=\mathbf{3 0}$

So, it is positive.
9. $a \times(-1)=30 \Rightarrow 30 \times(-1)=-\mathbf{3 0}$

So, it is negative.
10. (i) T
(ii) F
(iii) F
(iv) F
(v) F
11. (i) $18 \div(-3)=(18) \times \frac{1}{-3}=-6$
(ii) $(-18) \div 3=(-18) \times \frac{1}{3}=-6$
(iii) $(-18) \div(-3)=-18 \times \frac{1}{-3}=\mathbf{6}$
(iv) to (x) Do yourself.
(xi) $200000 \div(-100)=200000 \times \frac{1}{-100}=-\mathbf{2 0 0 0}$
(xii) Do yourself.
12. (i) 1
(ii) - 3785 (iii) 0
(iv) - 3065 (v) - 312
(vi) - 567
13. (i) T
(ii) F
(iii) F
(iv) T
(v) F (vi) F .
14. (i) $10 \times 10 \times 10 \times 10=10^{\mathbf{4}}$
(ii) $(-13) \times(-13) \times(-13) \times(-13) \times(-13) \times(-13)$

$$
=(-13)^{6}=13^{\mathbf{6}}
$$

15. (i) $50^{2}=50 \times 50=2500$
(ii) $(-1)^{51}=-\mathbf{1}$
(iii) $1^{100}=\mathbf{1}$
(iv) to (vi) Do yourself.
(vii) $2^{3} \times 2^{5}=2^{3+5}=2^{8}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
$=2^{8}=\mathbf{2 5 6}$
(viii) to (xii) Do yourself.

Apply Your Mind!

1. (b)
2. (b)
3. (a)
4. (b)

2.

Fractions

Learning Target 2.1

1. (i) $\frac{9}{30}+\frac{11}{30}+\frac{15}{30}=\frac{35}{30}=\frac{7}{6}$ (ii) $\frac{8}{25}+\frac{12}{25}+\frac{5}{25}=\frac{25}{25}=1$
(iii) to (vi) Do yourself.
2. (i) $\frac{8}{17}-\frac{5}{17}=\frac{3}{17}$
(ii) to (iv) Do yourself.
(v) $3 \frac{2}{5}-1 \frac{3}{10}=\frac{17}{5}-\frac{13}{10}=\frac{21}{10}=2 \frac{1}{10}$
(vi) Do yourself.
3. (i) $\frac{3}{4}+\frac{15}{16}-\frac{13}{8}=\frac{12+15-26}{16}=\frac{27-26}{16}=\frac{1}{16}$
(ii) to (vi) yourself.
4. Required number $=\frac{57}{14}-\frac{19 \times 2}{14}=\frac{57}{14}-\frac{38}{14}=\frac{19}{14}=1 \frac{5}{14}$
5. Do yourself.
6. Cost of a book $=₹ 85 \frac{1}{5}=₹ \frac{426}{5}$

Cost of a note book =₹ $25 \frac{1}{4}=₹ \frac{101}{4}$
Total cost $=\frac{426}{5}+\frac{101}{4}=\frac{1704+505}{20}=\frac{2209}{20}=₹ 110 \frac{9}{20}$
7. $\frac{4}{7}$ th, $\frac{5}{8}$ th $=\frac{32,35}{56}$ Since $\mathbf{3 5}>\mathbf{3 2 .}$ Or $\frac{5}{8}>\frac{4}{7}$
(So, his daughter got more of his property.)
8. Height of Juhi $=1 \frac{3}{5} m \Rightarrow \frac{8}{5} m$

Height of Megha $=1 \frac{3}{4} \mathrm{~m} \Rightarrow \frac{7}{4} \mathrm{~m}$
So, Megha is longer than Juhi.
Difference $=\frac{7}{4}-\frac{8}{5}=\frac{3}{20} \mathrm{~m}$
9. $\frac{1}{17}, \frac{3}{19}, \frac{5}{21}=\frac{399,1071,1615}{6783}$ Since $\mathbf{3 9 9}<\mathbf{1 0 1 7}<\mathbf{1 6 1 5}$

So, Soap C has most and soap A has least incense.
10. Total weight of fruits $=3 \frac{1}{4}+2 \frac{2}{5}+5 \frac{2}{5}=\frac{13}{4}+\frac{12}{5}+\frac{27}{5}$

$$
=\frac{65+48+108}{20}=\frac{221}{20}=11 \frac{1}{20} \mathrm{~kg}
$$

11. Length of pencil $=17 \frac{3}{4}=\frac{71}{4} \mathrm{~cm}$

$$
\text { It is sharpened }=2 \frac{1}{3} \mathrm{~cm}=\frac{7}{3} \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Remaining length } & =\frac{71}{4}-\frac{7}{3}=\frac{213-28}{12} \\
& =\frac{185}{12}=\mathbf{1 5} \frac{\mathbf{5}}{\mathbf{1 2}} \mathbf{~ c m}
\end{aligned}
$$

12. Naman walks to go school $=5 \frac{1}{2} \mathrm{~km}=\frac{11}{2} \mathrm{~km}$

$$
\begin{aligned}
\text { Naman rides to bus } & =12 \frac{3}{4} \mathrm{~km}=\frac{51}{4} \mathrm{~km} \\
\text { Naman walks again } & =1 \frac{2}{3}=\frac{5}{3} \mathrm{~km} \\
\text { Total distance } & =\frac{11}{2}+\frac{51}{4}+\frac{5}{3}=\frac{66+153+20}{12} \\
& =\frac{239}{12}=\mathbf{1 9} \frac{\mathbf{1 1}}{\mathbf{1 2}} \mathbf{~ k m}
\end{aligned}
$$

Thus, $19 \frac{11}{12} \mathrm{~km}$ is the total distance travelled by Naman.

Learning Target 2.2

1. (i) $\frac{5}{11} \times \frac{11}{5}=\frac{55}{55}=\mathbf{1} \quad$ (ii), (iii) Do yourself.
(iv) $3 \frac{1}{5} \times \frac{25}{32}=\frac{16}{5} \times \frac{25}{32}=\frac{5}{2}=\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$
(v), (vi), (vii), (viii), (ix), (x) Do yourself.
2. (i) $\frac{5}{6} \times \frac{32}{25} \times \frac{3}{2}=\frac{8}{5}=\mathbf{1} \frac{\mathbf{3}}{\mathbf{5}}$
(ii), (iii), (iv), (v), (vi) Do yourself.
3. (i) One-half of $₹ 124=\frac{1}{2}$ of $₹ 124=\frac{1}{2} \times ₹ 124=₹ \mathbf{6 2}$
(ii), (iii), (iv) Do yourself.
4. Cost of 1 kg rice $=₹ 44 \frac{2}{3}=₹ \frac{134}{3}$

Cost of $3 \frac{1}{3} \mathrm{~kg}$ rice $=\frac{134}{3} \times 3 \frac{1}{3}=\frac{134}{3} \times \frac{10}{3}=₹ \mathbf{1 4 8} \frac{\mathbf{8}}{\mathbf{9}}$
Thus, cost of $3 \frac{1}{3} \mathrm{~kg}$ rice is ₹ $148 \frac{8}{9}$.
5. Speed of fox $=150 \frac{2}{3}$ mile $/$ hour $=\frac{452}{3}$ mile $/$ hour

Speed of panther $=\frac{452}{3} \times 10=\frac{4520}{3}=\mathbf{1 5 0 6} \frac{\mathbf{2}}{\mathbf{3}} \mathbf{\text { mile}} /$ hour Thus, speed of panther is $1506 \frac{2}{3}$ mile/hour.
6. A farmer can put up a fence in one day $=\frac{1}{3} \mathrm{~km}$

A farmer can put up a fence in $6 \frac{2}{3}$ days $=\frac{1}{3} \times \frac{20}{3}=\frac{20}{9}=\mathbf{2} \frac{\mathbf{2}}{\mathbf{9}} \mathbf{~} \mathbf{m}$
7. Johny spends on food and rent $=\frac{3}{5}$

$$
\text { Remaining part of his salary }=1-\frac{3}{5}=\frac{2}{5}
$$

Now,

$$
\begin{aligned}
\frac{1}{5} \text { of } \frac{2}{5} & =\frac{1}{5} \times \frac{2}{5}=\frac{2}{25} \\
\frac{2}{25} \text { of ₹ } 40,000 & =₹ \mathbf{3 2 0 0}
\end{aligned}
$$

So, Johny donates ₹ 3200 .
8.

$$
\begin{aligned}
1 \text { marble weighs } & =10 \frac{1}{2} \text { grams }=\frac{21}{2} \text { grams } \\
230 \text { marbles weigh } & =\frac{21}{2} \times 230 \text { gram }=\mathbf{2 4 1 5} \text { grams }
\end{aligned}
$$

Thus, weight of 230 marbles is 2415 grams.
9. A car can run in 1 L of petrol $=16 \frac{1}{4} \mathrm{~km}$ or $\frac{65}{4} \mathrm{~km}$

A car can run in $5 \frac{2}{3} \mathrm{~L}$ of petrol $=\frac{65}{4} \times \frac{17}{3}=\frac{1105}{12}=\mathbf{9 2} \frac{\mathbf{1}}{\mathbf{1 2}} \mathbf{~ k m}$

Learning Target 2.3

1. (i) The reciprocal of $\frac{3}{2}=\frac{\mathbf{2}}{\mathbf{3}}$ (ii), (iii), (iv) and (v) Do yourself.
2. (i) $\frac{4}{5} \div \frac{7}{15} \Rightarrow \frac{4}{5} \times \frac{15}{7}=\frac{12}{7}=\mathbf{1} \frac{\mathbf{5}}{\mathbf{7}}$
(ii), (iii), (iv), (v) Do yourself.
(vi) $3 \frac{4}{7} \div 1 \frac{5}{14} \Rightarrow \frac{25}{7} \div \frac{19}{14} \Rightarrow \frac{25}{7} \times \frac{14}{19}=\frac{50}{19}=\mathbf{2} \frac{\mathbf{1 2}}{\mathbf{1 9}}$
(vii), (viii), (ix) Do yourself.
3. A factory produced steel in a month $=6000 \frac{5}{12}=\frac{72005}{12}$ tons

A factory produced steel in a day $=\frac{72005}{12} \div 30$

$$
=\frac{72005}{12} \times \frac{1}{30}=\frac{14401}{72}=\mathbf{2 0 0} \frac{\mathbf{1}}{\mathbf{7 2}} \text { tons }
$$

Thus, $200 \frac{1}{72}$ tons is the daily production.
4. The product of two numbers $=5 \frac{2}{3}=\frac{17}{3}$

$$
\text { One of them is }=2 \frac{4}{15}=\frac{34}{15}
$$

$$
\text { Other is } \frac{17}{3} \div \frac{34}{15}=\frac{17}{3} \times \frac{15}{34}=\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}
$$

5. The number should be multiplied $\frac{5}{6} \div 3 \frac{4}{7}$

$$
=\frac{5}{6} \div \frac{25}{7}=\frac{5}{6} \times \frac{7}{25}=\frac{7}{\mathbf{3 0}}
$$

6. A boat can carry weight $=690 \mathrm{~kg}$

$$
\text { A box weight }=7 \frac{2}{3}=\frac{23}{3} \mathrm{~kg}
$$

$$
\text { Thus the boat can carry }=690 \div \frac{23}{3}=\frac{690 \times 3}{23}=90 \text { boxes }
$$

Thus, 90 boxes can be shipped.
7. Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{420 \frac{2}{5}}{4 \frac{1}{5}}=\frac{\frac{2102}{5}}{\frac{21}{5}}=\frac{2102}{21}$

$$
=100 \frac{2}{21} \mathrm{~km} / \mathrm{hour}
$$

Thus, speed is $100 \frac{2}{11} \mathrm{~km} /$ hour.
8.

$$
\begin{aligned}
\text { Area of rectangle } & =83 \frac{3}{4} \mathrm{~m}^{2}=\frac{335}{4} \mathrm{~m}^{2} \\
\text { One side of rectangle } & =12 \frac{1}{2} \mathrm{~m}=\frac{25}{2} \mathrm{~m} \\
\text { Other side of rectangle } & =\frac{335}{4} \div \frac{25}{2}=\frac{335}{4} \times \frac{2}{25} \\
& =\frac{67}{10}=\mathbf{6} \frac{7}{\mathbf{1 0}} \mathbf{m}
\end{aligned}
$$

Thus, the other side is $6 \frac{7}{10} \mathrm{~m}$.
9. Number of cans of juice $=\frac{20}{1 \frac{1}{3}}=\frac{20 \times 3}{4}=\mathbf{1 5}$ cans

Thus, there are 15 cans of juice used.
10. Cost of an egg $=₹ 5 \frac{1}{4}=₹ \frac{21}{4}$

Number of eggs $=\frac{840}{\frac{21}{4}}=\frac{840}{21} \times 4=40 \times 4=160$

Apply Your Mind!

1. (a)
2. (b)
3. (b)
\square

3.

Decimal

Learning Target 3.1

1. (i) $4.0300,4.0303,0.4000,0.0400$
(ii) $1.2100,56.0000,0.2359,12.1000,0.0120$
2. (i) $3.9129,39.0129,39.129,39.219$ (ii) $0.0501,0.5019$, 2.05019, 2.5019
(iii) $0.0004,0.00234,0.0034,0.02340$
(iv) $30.0506,32.0056,32.0506,32.05061$
(v) $0.00123,0.00124,0.00213,0.00412$
3. (i) $1.11,1.101,1.1,1.0101,1.01$ (ii) $2.43,2.4,2.34,2.3$
(iii) 99.09, 9.09, 0.990, 0.909, 0.099 .

Learning Target 3.2

1. (i) $1.25=\frac{125}{100}=\frac{5}{4}$
(ii) $7.56=\frac{756}{100}=\frac{189}{25}$
(iii) to (vii) Do yourself. (viii) $0.099=\frac{99}{1000}$
2. (i) $\frac{15}{4}=3.75$
(ii) Do yourself.
(iii) $\frac{483}{16}=30.1875$
(iv) Do yourself.
$\begin{array}{ll}\text { 3. (i) } \frac{5}{100}=0.05 & \text { (ii) } 0.02 \\ \text { (iv) } 0.0052 & \text { (v) } \frac{517}{100000}=0.00517\end{array}$
(vi) $\frac{111}{1000000}=0.000111$
(vii) $\frac{49}{1}=49$

Learning Target 3.3

1. (i) $15.19=15.20$ (ii) $4.256=4.260$ (iii) Do yourself.
(iv) $45.0385=45.0390$
(v) to (viii)Do yourself.
2. (i) $\frac{43}{12}=3.58 \quad$ (ii) to (v) Do yourself.
$12 \stackrel{3.58}{43(}$
$\frac{36}{70}$
$\frac{60}{100}$
$\therefore \frac{96}{4}$
$\quad \underline{43}$
3. (i) $5.5,13.7,12.8,0.35$ and 1.11
5.5
13.7
12.8
0.35
+1.11
+33.46
(ii) to (iv) Do yourself.
4. (i) $500+50+5+\frac{5}{10}+\frac{5}{100}$

$$
=500+50+5+0.5+0.05=555.55
$$

(ii) Do yourself.
5. (i) 37.5 from 48.31
48.31
-37.50
10.81
(ii), (iii) Do yourself.

> (iv) | 1.2345 from 7.0091 |
| :--- |
| 7.0091 |
| -1.2345 |
| 5.7746 |

6. Twinkle had thread $=100 \mathrm{~m}$

Thread broke $=12.03 \mathrm{~m}$
Left thread $=100 \mathrm{~m}-12.03 \mathrm{~m}=\mathbf{8 7 . 9 7} \mathrm{m}$
7. Rahim was standing from a plane mirror $=5.36 \mathrm{ft}$

The distance of image from him $=5.36 \mathrm{ft}+5.36 \mathrm{ft}=\mathbf{1 0 . 7 2} \mathbf{~ f t}$
8. Mrs. Saasha bought flour $=4 \mathrm{~kg} 250 \mathrm{~g}$

Mrs. Saasha bought nuts $=3 \mathrm{~kg} 50 \mathrm{~g}$
Mrs. Saasha bought olive oil $=350 \mathrm{~g}$

Total weight did she buy $=4 \mathrm{~kg} 250 \mathrm{~g}+3 \mathrm{~kg} 50 \mathrm{~g}+350 \mathrm{~g}$ $=7 \mathrm{~kg} 650 \mathrm{~g}$
9. The length of triathlon $=10 \mathrm{~km}$

Kunal ran $=5.1 \mathrm{~km}$
Kunal cycled $=4.2 \mathrm{~km}$
Total of running and cycling $=5.1 \mathrm{~km}+4.2 \mathrm{~km}=9.3 \mathrm{~km}$
Rest distance $=10 \mathrm{~km}-9.3 \mathrm{~km}$
$=0.7 \mathrm{~km}$ or 700 m
So, Kunal swam 0.7 km or 700 m .
10. It must be added $301.5-294.315=7.185$
11. It must be subtracted $=90.1-9.09=\mathbf{8 1 . 0 1}$

Learning Target 3.4

(viii) 42.03×14.06
(ix) to (xii) Do yourself.
42.03
$\times 14.06$
25218
0000×
$16812 \times x$
4203×XX
$\underline{590.9418}$
(xiii) 0.256×0.378 (xiv), (x) Do yourself.
0.256
$\begin{array}{r}\times 0.378 \\ \hline 2048\end{array}$
2048
1792×
0768xx
$0000 \times \times \times$
$\underline{0.096768}$
3. (i) $1.5 \times 6.2 \times 3$
(ii), (iii) Do yourself.
1.5
$\begin{array}{r}1.5 \\ \times 6.2 \\ \hline\end{array}$
30
90x
9.30
$\begin{array}{r}\times 3 \\ \hline\end{array}$
$\underline{27.90}$
(iv) $0.97 \times 0.05 \times 0.42 \quad$ (v) Do yourself.

0.97	0.0485
$\times 0.05$	$\times 0.42$
485	00970
$000 \times$	$01940 \times$
$000 \times \times$	$\underline{00000 \times \times}$
$\underline{0.0485}$	$\underline{0.020370}$

4. A fan rotates per minute $=123.5$

The fan adjusted 3.5 times more $=123.5 \times 3.5$
$=432.25$ per minute
5. A box of wood weighs $=13.3 \mathrm{~kg}$

15 boxes of wood weigh $=13.3 \times 15=199.5 \mathbf{~ k g}$
6. Motor bike goes in $1 \mathrm{~L}=67.33 \mathrm{~km}$

Motor bike goes in $3.25 \mathrm{~L}=67.33 \times 3.25=\mathbf{2 1 8 . 8 2 2 5} \mathbf{k m}$
7. Charges for one unit $=₹ 4.28$

Charges for 49 units $=4.28 \times 49=₹ \mathbf{2 0 9 . 7 2}$
8. Mohan spent for rice $=36.30 \times 2.5=₹ 90.75$

Mohan spent for apples $=4 \times ₹ 50.50=₹ 202.00$
Mohan spent for petrol $=₹ 12.39 \times 79.03=₹ 979.18$
Mohan spent total = ₹ $90.75+₹ 202.00$ + ₹ 979.18 =₹ $\mathbf{1 2 7 1 . 9 3}$

Learning Target 3.5

1. (i) 56 by 10
10) $\frac{5.6}{56}$
$\frac{50}{60}$
60
\times
(iii) 0.051 by 10 0.0051 10) 0.051

50 10 10
2. (i) $132.65 \frac{\mathrm{x}}{\text { by } 100}$
2. (i) $132.65 \stackrel{\mathrm{x}}{\text { by } 100}$
(ii), (iii) Do yourself.
(iv), (v) (vi) Do yourself.
(ii) Do yourself.
$1 0 0 \longdiv { 1 . 3 2 6 5 }$
100
326
300
265
$\underline{200}$
650
600
500
$\underline{500}$
\times
(iv) 0.5 by 100
(v) to (ix) Do yourself.
$1 0 0 \longdiv { 0 . 0 0 5 } 0 . 5 0 0$
500

$$
x
$$

3. (i) 7 by 2
(ii), (iii) Do yourself.
2) $\begin{array}{r}3.5 \\ 7\end{array}$

$\frac{6}{10}$
10
\times

(iv) 699 by 40
(v), (vi) Do yourself.

$$
\frac{17.475}{4 0 \longdiv { 6 9 9 }}
$$

$\underline{40}$ 299
280 190
$\frac{160}{300}$
\qquad
200
$\underline{200}$
\times
4. (i) 19.2 by 6
(ii), (iii) Do yourself
6) $\frac{3.2}{19.2}$
18
12
12
\times
(iv) 0.4212 by 18
(v) to (ix) Do yourself.
18 $\frac{0.0234}{0.4212}$
36
61
54
72
$\underline{72}$
\times
5. (i) 3.24 by 0.6 ,
(ii), (iii), (iv) Do yourself.
$0 . 6 \longdiv { 5 . 4 }$
30 24
$\underline{24}$
\qquad
(v) 0.63512 by 13.6
(vi) Do yourself.

13.6) | $\frac{0.0467}{0.63512}$ |
| ---: |
| $\frac{544}{911}$ |
| $\frac{810}{952}$ |
| $\underline{952}$ |

6. Cost of 31 eggs = ₹ 173.60
Cost of $1 \mathrm{egg}=₹ 173.60 \div 31=₹ \mathbf{5 . 6 0}$
7. Number of sweet balls $=588.38 \mathrm{~g} \div 45.26=\mathbf{1 3}$
8. Total of rainfall in one month $=37.02 \mathrm{~mm}$

Rainfall in one day $=37.02 \mathrm{~mm} \div 30=\mathbf{1 . 2 3 4} \mathbf{~ m m}$
Apply your Mind!

1. (a)
2. (b)
3. (b)
4. (c)

4.
 Rational Numbers

Learning Target 4.1

1. (i) F
(ii) T
(iii) F
(iv) T
(v) F
(vi) F
2. (i) 12
(ii) 6
(iii) -15
(iv) -67
3. (i) 7
(ii) 49
(iii) -9
(iv) -9
4. (i) $\frac{1}{4} \times \frac{5}{5}=\frac{\mathbf{5}}{\mathbf{2 0}}$
(ii) $\frac{1 \times 9}{4 \times 9}=\frac{9}{36}$
(iii) Do yourself.
(iv) $\frac{1 \times 1000}{4 \times 1000}=\frac{\mathbf{1 0 0 0}}{\mathbf{4 0 0 0}}$
(v) $\frac{1 \times-25}{4 \times-25}=\frac{\mathbf{- 2 5}}{\mathbf{- 1 0 0}}$
5. (i) $\frac{2}{10}=\frac{2 \times 1}{2 \times 5}=\frac{\mathbf{1}}{\mathbf{5}}$
(ii) $\frac{-36}{180}=\frac{-2 \times 2 \times 3 \times 3}{2 \times 2 \times 3 \times 3 \times 5}=\frac{-\mathbf{1}}{\mathbf{5}}$

2	36
2	18
3	9
3	3
	1

2	180
2	90
3	45
3	15
5	5
	1

(iii), (iv) Do yourself.
6. (i) $\frac{2}{3}=\frac{x}{135}$

By cross multiplication

$$
\begin{aligned}
2 \times 135 & =3 \times x \\
x & =\frac{2 \times 135}{3} \\
x & =2 \times 45 \\
x & =\mathbf{9 0}
\end{aligned}
$$

or
(ii) $\frac{5}{x}=\frac{90}{216}$

By cross multiplication

$$
\begin{array}{lrl}
& 90 \times x & =5 \times 216 \\
x & =\frac{5 \times 216}{90} \\
\Rightarrow & x & =\mathbf{1 2} \\
\text { (iii), (iv) Do yourself. } & \\
\text { (v) } \frac{72}{81}=\frac{8}{x} &
\end{array}
$$

By cross multiplication

$$
\begin{aligned}
& 72 \times x=8 \times 81 \\
& \text { i.e., } \\
& x=\frac{8 \times 81}{72} \\
& \text { or } \\
& x=\frac{81}{9} \boldsymbol{x}=9
\end{aligned}
$$

7. (i) $\frac{-144}{-504}=\frac{144}{504}=\frac{2 \times 2 \times 2 \times 2 \times 3 \times 3}{2 \times 2 \times 2 \times 3 \times 3 \times 7}=\frac{2}{7}$

2	144
2	72
2	36
2	18
3	9
3	3
	1

2	504
2	252
2	126
3	63
3	21
7	7
	1

(ii) Do yourself.
(iii) $\frac{240}{-840}=\frac{24}{-84}=\frac{2 \times 2 \times 2 \times 3}{-2 \times 2 \times 3 \times 7}=\frac{\mathbf{2}}{-7}$

2	24
2	12
2	6
3	3
	1

2	84
2	42
3	21
7	7
	1

(iv) $\frac{225}{625}=\frac{3 \times 3 \times 5 \times 5}{5 \times 5 \times 5 \times 5}=\frac{\mathbf{9}}{\mathbf{2 5}}$

5	225
5	45
3	9
3	3
	1

5	625
5	125
5	25
5	5
	1

Learning Target 4.2

1. (i) F
(ii) F
(iii) F
(iv) T
(v) F
(vi) F
(vii) T
2. (i) $\frac{2 \times-28}{5 \times-28}=\frac{\mathbf{- 5 6}}{\mathbf{- 1 4 0}}$
(ii) $\frac{2 \times 77}{5 \times 77}=\frac{\mathbf{1 5 4}}{\mathbf{3 8 5}}$
(iii) $\frac{2 \times-375}{5 \times-375}=\frac{-750}{-1875}$
(iv) $\frac{2 \times 250}{5 \times 250}=\frac{\mathbf{5 0 0}}{\mathbf{1 2 5 0}}$
(v) Do yourself.
3. (i) $\frac{5}{6}$ and $\frac{7}{9}$

LCM of 6 and 9 is 18 .

$$
\frac{5}{6}, \frac{7}{9}=\frac{5 \times 3,7 \times 2}{18}=\frac{\mathbf{1 5}}{\mathbf{1 8}}, \frac{\mathbf{1 4}}{\mathbf{1 8}}
$$

(ii) Do yourself.
(iii) $\frac{4}{5}, \frac{17}{20}, \frac{23}{40}$ and $\frac{11}{16}$

LCM of $5,20,40$ and 16 is 80 .

$$
\begin{aligned}
& =\frac{4 \times 16,17 \times 4,23 \times 2,11 \times 5}{80}=\frac{64,68,46,55}{80} \\
& =\frac{\mathbf{6 4}}{\mathbf{8 0}}, \frac{\mathbf{6 8}}{\mathbf{8 0}}, \frac{\mathbf{4 6}}{\mathbf{8 0}}, \frac{\mathbf{5 5}}{\mathbf{8 0}}
\end{aligned}
$$

4. Do yourself.
5. (i) $\frac{-9}{12}$ and $\frac{8}{-12}$

Because numerators are not equal.
Therefore $\frac{-9}{12} \neq \frac{8}{-12}$
(ii) $\frac{-16}{20}$ and $\frac{20}{-25}$

LCM of 20 and 25 is 100.

$$
=\frac{-16 \times 5,-20 \times 4}{100}=\frac{-80,-80}{100}
$$

or $\frac{-80}{100}, \frac{-80}{100}$
Clearly

$$
\frac{-80}{100}=\frac{-80}{100}
$$

Therefore,

$$
\frac{-16}{20}=\frac{20}{-25}
$$

(iii) Do yourself.
(iv) $\frac{-8}{-14}$ and $\frac{13}{21}$

LCM of 14 and 21 is 42 .

$$
\begin{aligned}
& \qquad \begin{array}{l}
\quad \frac{8 \times 3,13 \times 2}{42}=\frac{24}{42}, \frac{26}{42} \\
\frac{24}{42} \neq \frac{26}{42} \quad[\because \text { Numerators are not equal }]
\end{array} \\
& \text { Therefore } \frac{-\mathbf{8}}{-\mathbf{1 4}} \neq \frac{\mathbf{1 3}}{\mathbf{2 1}}
\end{aligned}
$$

6. (i) $-\frac{4}{11}, \frac{3}{11} \Rightarrow \frac{\mathbf{3}}{\mathbf{1 1}}>\frac{-\mathbf{4}}{\mathbf{1 1}} \quad \because \quad 3>-4$
(ii) $-\frac{5}{8}, \frac{-3}{4}$

LCM of 4 and 8 is 8 .

$$
=\frac{-5 \times 1,-3 \times 2}{8}=\frac{-5}{6}, \frac{-6}{8}, \Rightarrow \frac{-\mathbf{5}}{8}>\frac{-\mathbf{3}}{\mathbf{4}}
$$

(iii) Do yourself.
(iv) $\frac{-4}{9}, \frac{-3}{-7}$

LCM of 7 and 9 is 63 .

$$
\frac{(-4) \times 7,9 \times 3}{63}=-\frac{28,27}{63}=\frac{-28}{63}, \frac{27}{63}
$$

Hence, $\frac{3}{7}>\frac{-4}{9}$
7. (i) $\frac{-4}{7}, \frac{5}{-7}=\frac{-4}{7}, \frac{-5}{7} \quad \Rightarrow \quad \therefore-5<-4 \quad \Rightarrow \quad \because \frac{-5}{7}<\frac{-4}{7}$
(ii) Do yourself.
(iii) $\frac{16}{-5}, \frac{3}{1}$

LCM of 5 and 1 is 5 .

$$
=\frac{-16,3 \times 5}{5}=\frac{-16}{5}, \frac{15}{5}
$$

$$
\therefore \quad-16<15 \quad \Rightarrow \quad \because \quad \frac{-16}{-5}<\frac{\mathbf{1 5}}{\mathbf{5}}
$$

(iv) Do yourself.
8. (i) $\frac{3}{-2}, \frac{3}{8}, \frac{-7}{4}, \frac{1}{10}$

LCM of $2,4,8$ and 10 is 40 .

$$
\begin{aligned}
\frac{-3 \times 20,3 \times 5,-7 \times 10,1 \times 4}{40} & =\frac{-60}{40}, \frac{15}{40}, \frac{-70}{40}, \frac{4}{40} \\
& =\frac{-7}{4}, \frac{\mathbf{3}}{-\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{1 0}}, \frac{\mathbf{3}}{\mathbf{8}}
\end{aligned}
$$

(ii) Do yourself.
9. (i) $\frac{-7}{2}, \frac{2}{-3}, \frac{5}{6}, \frac{2}{3}$

LCM of $2,3,6$ is 6 .

$$
\begin{aligned}
\frac{-7 \times 3,-2 \times 2,5 \times 1,2 \times 2}{6} & =\frac{-21}{6}, \frac{-4}{6}, \frac{5}{6}, \frac{4}{6} \\
& =\frac{\mathbf{5}}{\mathbf{6}}, \frac{\mathbf{2}}{\mathbf{3}}, \frac{\mathbf{2}}{-\mathbf{3}}, \frac{-7}{2}
\end{aligned}
$$

(ii) Do yourself.
10. (i) >
(ii) $<$
(iii) $=$
(iv) $>$
11. (i) $\left|\frac{-2}{3}\right|=\frac{2}{3}$
(ii) $\left|\frac{5}{-7}\right|=\frac{5}{7}$
(iii) $\left|\frac{2}{9}\right|=\frac{2}{9}$
(iv) $\left|\frac{-5}{-8}\right|=\frac{5}{8}$
12. (i) $\left|\frac{2}{5}-\frac{8}{9}\right|$

LCM of 5 and 9 is 45 .

$$
\left|\frac{9 \times 2-8 \times 5}{45}\right|=\left|\frac{18-40}{45}\right|=\left|\frac{-22}{45}\right|=\frac{\mathbf{2 2}}{\mathbf{4 5}}
$$

(ii) $\quad\left|\frac{7}{3}-\left(\frac{-8}{15}\right)\right|=\left|\frac{7}{3}+\frac{8}{15}\right|$ LCM of 3 and 15 is 15 .

$$
=\left|\frac{7 \times 5+8}{15}\right|=\left|\frac{35+8}{15}\right|=\left|\frac{43}{15}\right|=\mathbf{2} \frac{\mathbf{1 3}}{\mathbf{1 5}}
$$

(iii) $\left|-10-\left(\frac{10}{-3}\right)\right|=\left|-10+\frac{10}{3}\right|=\left|\frac{-30+10}{3}\right|=\left|\frac{-20}{3}\right|$

$$
=\frac{20}{3}=6 \frac{\mathbf{2}}{\mathbf{3}}
$$

Apply Your Mind!

1. (c)
2. (d)
3. (d)
4. (c)
5. (a)
6. (d)

5. Operations on Rational Numbers

Learning Target 5.1

1. (i) $\frac{7}{13}+\frac{(-6)}{13}=\frac{7-6}{13}=\frac{\mathbf{1}}{\mathbf{1 3}}$
(ii), (iii) Do yourself.
(iv) $\frac{-23}{28}+\frac{5}{-28}=\frac{-23}{28}+\frac{-5}{28}=\frac{-23+(-5)}{28}$

$$
=\frac{-23-5}{28}=\frac{-28}{28}=-\mathbf{1}
$$

2. (i) $\frac{-6}{8}+\frac{2}{3}$

The LCM of 8 and 3 is 24 .

$$
=\frac{-6 \times 3+2 \times 8}{24}=\frac{-18+16}{24}=\frac{-2}{24}=\frac{-\mathbf{1}}{\mathbf{1 2}}
$$

(ii), (iii) Do yourself.
(iv) $\frac{-7}{26}+\frac{-11}{39}$

The LCM of 26 and 39 is 78 .

$$
\begin{aligned}
& =\frac{(-7) \times 3+(-11) \times 2}{78} \\
& =\frac{-21+(-22)}{78}=\frac{-21-22}{78}=\frac{-\mathbf{4 3}}{\mathbf{7 8}}
\end{aligned}
$$

3. (i) $\frac{4}{11}+\frac{-5}{8}=\frac{-5}{8}+\frac{4}{11}$

$$
\frac{32-55}{88}=\frac{-55+32}{88} \Rightarrow \frac{-23}{88}=\frac{-23}{88} \Rightarrow \text { LHS }=\mathbf{R H S}
$$

(ii), (iii), (iv) Do yourself.
4. (i) $\frac{-3}{4}+\left(\frac{2}{5}+\frac{-4}{7}\right)=\left(\frac{-3}{4}+\frac{2}{5}\right)+\frac{-4}{7}$

$$
\begin{aligned}
\frac{-3}{4}+\frac{(14-20)}{35} & =\frac{(-15+8)}{20}+\frac{-4}{7} \\
\frac{-3}{4}-\frac{6}{35} & =\frac{-7}{20}-\frac{4}{7} \\
\frac{-105-24}{140} & =\frac{-49-80}{140}
\end{aligned}
$$

$$
\frac{-129}{140}=\frac{-129}{140} \Rightarrow \mathbf{L H S}=\mathbf{R S H}
$$

(ii), (iii), (iv) Do yourself.
5. (i) $\frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3}$

LCM of 3,5 and 15 is 15 .

$$
\begin{aligned}
& =\frac{2 \times 3+8 \times 5+(-11)+4 \times 3+(-2) \times 5}{15} \\
& =\frac{6+40-11+12-10}{15}=\frac{\mathbf{3 7}}{\mathbf{1 5}}
\end{aligned}
$$

(ii) Do yourself.
6. (i) The additive inverse of $\frac{1}{4}$ is $\frac{-1}{4}$.
(ii) The additive inverse of $\frac{-3}{4}$ is $\frac{3}{4}$.
(iii) The additive inverse of $\frac{-7}{-9}$ is $\frac{-7}{9}$.
(iv) The additive inverse of $\frac{16}{-15}$ is $\frac{16}{15}$.
7. (i) $0+\frac{9}{11}=\frac{9}{11}$
(ii), (iii), (iv) Do yourself.

Learning Target 5.2

1. (i) F (ii) T (iii) T (iv) T
2. (i) $\frac{13}{15}-\frac{12}{25}$

LCM of 15 and 25 is 75 .

$$
=\frac{13 \times 5-12 \times 3}{75}=\frac{65-36}{75}=\frac{\mathbf{2 9}}{\mathbf{7 5}}
$$

(ii), (iii) Do yourself.
(iv) $\frac{-6}{13}-\frac{-7}{15}=\frac{-6}{13}+\frac{7}{15}$

The L.C.M. of 13 and 15 is 195.

$$
=\frac{(-6) \times 15+7 \times 13}{195}=\frac{-90+91}{195}=\frac{\mathbf{1}}{\mathbf{1 9 5}}
$$

3. (i) $\frac{7}{8}-\frac{5}{8}=\frac{7-5}{8}=\frac{2}{8}=\frac{1}{4}$

$$
\frac{5}{8}-\frac{7}{8}=\frac{5-7}{8}=\frac{-2}{8}=\frac{-1}{4}=\frac{1}{4} \neq-\frac{1}{4}
$$

$\begin{array}{ll}\text { (ii) Do yourself. } & \text { (iii) } \frac{8}{33}-\frac{5}{22}\end{array}$
The LCM of 22 and 33 is 66 .

$$
\begin{gathered}
=\frac{8 \times 2-5 \times 3}{66}=\frac{16-15}{66}=\frac{1}{66} \\
\Rightarrow \quad \frac{5}{22}-\frac{8}{33}=\frac{15-16}{66}=\frac{-1}{66} \\
\Rightarrow \quad \frac{1}{66} \neq \frac{-1}{\mathbf{6 6}}
\end{gathered}
$$

4. Let the other number be x.

$$
\begin{aligned}
x+\frac{-15}{7} & =-8 \\
x-\frac{15}{7} & =-8 \quad \Rightarrow \quad x=-8+\frac{15}{7} \\
x & =\frac{-56+15}{7}=\frac{-\mathbf{4 1}}{7}
\end{aligned}
$$

5. Suppose we add $\frac{a}{b}$ to $\frac{-7}{8}$ to make it $\frac{5}{9}$

$$
\begin{aligned}
\frac{a}{b}+\frac{-7}{8} & =\frac{5}{9} \\
\frac{a}{b} & =\frac{5}{9}+\frac{7}{8}=\frac{40+63}{72}=\frac{\mathbf{1 0 3}}{\mathbf{7 2}}
\end{aligned}
$$

6. Suppose we subtract $\frac{a}{b}$ from $\frac{26}{33}$ to make it $\frac{-5}{11}$

$$
\begin{aligned}
\frac{26}{33}-\frac{a}{b} & =\frac{-5}{11} \Rightarrow \frac{26}{33}+\frac{5}{11}=\frac{a}{b} \\
\frac{26+5 \times 3}{33} & =\frac{a}{b} \\
\Rightarrow \quad \frac{a}{b} & =\frac{26+15}{33}=\frac{\mathbf{4 1}}{\mathbf{3 3}}
\end{aligned}
$$

7. (i) $\left(\frac{-8}{9}-\frac{11}{4}\right)-\frac{-4}{12}, \frac{-8}{9}-\left(\frac{11}{4}-\frac{-4}{12}\right)$

$$
\begin{aligned}
\mathrm{LHS} & =\left(\frac{-8 \times 4-11 \times 9}{36}\right)+\frac{4}{12} \\
& =\frac{-32-99}{36}+\frac{4}{12} \\
& =\frac{-32-99+12}{36}=\frac{-119}{36}
\end{aligned}
$$

$$
\text { RHS }=\frac{-8}{9}-\left(\frac{11}{4}-\frac{-4}{12}\right)=\frac{-8}{9}-\left(\frac{11}{4}+\frac{4}{12}\right)
$$

$$
=\frac{-8}{9}-\left(\frac{11 \times 3+4 \times 1}{12}\right)=\frac{-8}{9}-\left(\frac{33+4}{12}\right)
$$

$$
=\frac{-8}{9}-\frac{37}{12}=\frac{-8 \times 4-37 \times 3}{36}
$$

$$
=\frac{-32-111}{36}=\frac{-143}{36}
$$

Thus, LSH \neq RHS
(ii) Do yourself.
8. (i) $\frac{-2}{3}+\frac{5}{9}-\frac{-7}{6}=\frac{-2}{3}+\frac{5}{9}+\frac{7}{6}$

The LCM of 3,6 and 9 is 18 .

$$
\begin{aligned}
& =\frac{-2 \times 6+5 \times 2+7 \times 3}{18} \\
& =\frac{-12+10+21}{18}=\frac{31-12}{18}=\frac{\mathbf{1 9}}{\mathbf{1 8}}
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
9. (i) $\frac{-4}{13}-\frac{-3}{26}=\frac{-4}{13}+\frac{3}{26}=\frac{(-4) \times 2+3 \times 1}{26}=\frac{-8+3}{26}=\frac{\mathbf{- 5}}{\mathbf{2 6}}$
(ii) $\frac{-5}{14}+x=-1$

$$
\begin{array}{rlrl}
& & \frac{-5}{14}+1 & =-x \quad \Rightarrow \quad \frac{5}{14}-1=x \\
\Rightarrow & x & =\frac{5-14}{14}=\frac{-9}{14}
\end{array}
$$

(iii) $\frac{-7}{9}+x=3$

$$
\begin{aligned}
& x=3+\frac{7}{9} \\
& x=\frac{27+7}{9}=\frac{34}{9}
\end{aligned}
$$

(iv) $x+\frac{15}{23}=4$

$$
\begin{aligned}
& x=4-\frac{15}{23} \\
& x=\frac{4 \times 23-15}{23}=\frac{92-15}{23}=\frac{\mathbf{7 7}}{\mathbf{2 3}}
\end{aligned}
$$

Learning Target 5.3

1. (i) $\frac{3}{11}$ by $\frac{2}{5} \Rightarrow \frac{3}{11} \times \frac{2}{5}=\frac{\mathbf{6}}{\mathbf{5 5}} \quad$ (ii), (iii) Do yourself.
(iv) $\frac{25}{-9}$ by $\frac{3}{-10}=\frac{25}{-9} \times \frac{3}{-10}=\frac{75}{90}=\frac{5}{6}$
(v) Do yourself.
(vi) $\left(\frac{9}{-11}\right)$ by $\frac{22}{-27}=\frac{9}{-11} \times \frac{22}{-27}=\frac{9}{11} \times \frac{22}{27}=\frac{\mathbf{2}}{\mathbf{3}}$
(vii), (viii) Do yourself.
2. (i) $\frac{3}{20} \times \frac{4}{5}=\frac{\mathbf{3}}{\mathbf{2 5}}$
(ii) Do yourself.
(iii) $\frac{-9}{8} \times \frac{-16}{3}=\frac{9}{8} \times \frac{16}{3}=3 \times 2=6$
(iv) Do yourself.
3. (i) $\frac{4}{15} \times \frac{9}{5} \times \frac{50}{3}=4 \times 2=\mathbf{8}$ (ii) Do yourself.
(iii) $\left(\frac{-3}{2} \times \frac{4}{5}\right)+\left(\frac{9}{5} \times \frac{-10}{3}\right)-\left(\frac{1}{2} \times \frac{3}{4}\right)$

$$
=\frac{-6}{5}+\frac{(-6)}{1}-\frac{3}{8}=\frac{-6}{5}-\frac{6}{1}-\frac{3}{8}
$$

$$
\begin{aligned}
& =-\left(\frac{6}{5}+\frac{6}{1}+\frac{3}{8}\right)=-\left(\frac{48+240+15}{40}\right) \\
& =\frac{-303}{40}=-\mathbf{7} \frac{\mathbf{2 3}}{\mathbf{4 0}}
\end{aligned}
$$

(iv) Do yourself.
4. $\left(\frac{2}{9}+\frac{-3}{11}\right) \times\left(\frac{5}{2}+\frac{7}{8}\right)=\left(\frac{2 \times 11-9 \times 3}{99}\right) \times\left(\frac{20+7}{8}\right)$

$$
=\frac{22-27}{99} \times \frac{27}{8}=\frac{-5 \times 27}{99 \times 8}=\frac{-15}{88}
$$

5. $\left(\frac{-3}{2}-\frac{4}{15}\right) \times\left(\frac{3}{4}-\frac{7}{12}\right)=\left(\frac{-3 \times 15-4 \times 2}{30}\right) \times\left(\frac{9-7}{12}\right)$

$$
=\left(\frac{-45-8}{30}\right) \times\left(\frac{2}{12}\right)=\frac{-53}{30} \times \frac{2}{12}=\frac{-53}{180}
$$

6. (i) $\left(\frac{12}{8} \times \frac{16}{10}\right)+\left(\frac{-3}{9} \times \frac{18}{-16}\right)=\frac{12}{5}+\frac{3}{8}=\frac{12 \times 8+3 \times 5}{40}$

$$
=\frac{96+15}{40}=\frac{111}{40}
$$

(ii) Do yourself.
(iii) $\left(\frac{-4}{15} \times \frac{-5}{-8}\right)-\left(\frac{3}{5} \times \frac{6}{-15}\right)+\left(\frac{5}{-8} \times \frac{16}{15}\right)$

$$
\begin{aligned}
& =\frac{-1}{6}+\frac{6}{25}-\frac{2}{3}=-\left(\frac{1}{6}+\frac{2}{3}\right)+\frac{6}{25} \\
& =-\left(\frac{1}{6}+\frac{2}{3}\right)+\frac{6}{25}=-\left(\frac{1+4}{6}\right)+\frac{6}{25} \\
& =\frac{-5}{6}+\frac{6}{25}=\frac{-125+36}{150}=\frac{-89}{150}
\end{aligned}
$$

(iv) Do yourself.
7. $3 \frac{5}{7} \times 16 \frac{1}{2}=\frac{26}{7} \times \frac{33}{2}=\frac{13 \times 33}{7}=₹ \mathbf{6 1} \frac{\mathbf{2}}{7}$
8. Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
\begin{aligned}
& 65 \frac{1}{3}=\frac{x}{6 \frac{1}{2}} \quad \Rightarrow \quad \frac{196}{3}=\frac{x}{\frac{13}{2}} \\
& \Rightarrow \quad \frac{196}{3}=\frac{2 x}{13} \quad \Rightarrow \quad x=424 \frac{2}{3} \mathrm{~km}
\end{aligned}
$$

1. (i) T
(ii) F
(iii) T
(iv) T
(v) T
(vi) F
(vii) T
(viii) F
2. Verify the property
$x \times y=y \times x$
(i) $x=\frac{-1}{5}, y=\frac{2}{7}$

$$
\frac{-1}{5} \times \frac{2}{7}=\frac{2}{7} \times \frac{-1}{5}=\frac{-2}{35}=\frac{-2}{35}
$$

(ii), (ii), (iv) Do yourself.
3. Verfy the property

$$
a \times(b \times c)=(a \times b) \times c
$$

(i) $a=\frac{1}{3}, b=\frac{-2}{3}, c=\frac{4}{3}$

$$
\begin{aligned}
\frac{1}{3} \times\left(\frac{-2}{3} \times \frac{4}{3}\right) & =\left(\frac{1}{3} \times \frac{-2}{3}\right) \times \frac{4}{3} \\
\frac{1}{3} \times \frac{-2}{3} \times \frac{4}{3} & =\frac{1}{3} \times \frac{-2}{3} \times \frac{4}{3} \\
\frac{-\mathbf{8}}{27} & =\frac{\mathbf{8}}{\mathbf{2 7}}
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
4. Verify the property

$$
a \times(b+c)=(a \times b)+(a \times c)
$$

(i) $a=\frac{5}{6}, b=\frac{-3}{4}, c=\frac{7}{8}$

$$
\begin{aligned}
\frac{5}{6} \times\left(\frac{-3}{4}+\frac{7}{8}\right) & =\left(\frac{5}{6} \times \frac{-3}{4}\right)+\left(\frac{5}{6} \times \frac{7}{8}\right) \\
\frac{5}{6} \times\left(\frac{-6+7}{8}\right) & =\left(\frac{-5}{8}\right)+\frac{35}{48} \\
\frac{5}{6} \times \frac{1}{8} & =\frac{-5}{8}+\frac{35}{48} \\
\frac{5}{48} & =\frac{35-30}{48} \Rightarrow \frac{5}{48}=\frac{5}{48}
\end{aligned}
$$

(ii) Do yourself.
5. $x \times(y-z)=x \times y-x \times z$
(i) $x=\frac{1}{2}, y=\frac{3}{4}, z=\frac{-4}{5}$

$$
\frac{1}{2} \times\left(\frac{3}{4}-\frac{-4}{5}\right)=\frac{1}{2} \times \frac{3}{4}-\frac{1}{2} \times\left(\frac{-4}{5}\right)
$$

$$
\begin{aligned}
\frac{1}{2} \times\left(\frac{15+16}{20}\right) & =\frac{3}{8}+\frac{4}{10} \\
\frac{31}{40} & =\frac{15+16}{40} \Rightarrow \frac{\mathbf{3 1}}{\mathbf{4 0}}=\frac{\mathbf{3 1}}{\mathbf{4 0}}
\end{aligned}
$$

(ii) Do yourself.
6. (i) Multiplicative inverse of 15 is $\frac{\mathbf{1}}{\mathbf{1 5}}$.
(ii) Multiplicative inverse of -16 is $\frac{\mathbf{1}}{\mathbf{- 1 6}}$.
(iii) Multiplicative inverse of $\frac{5}{6}$ is $\frac{\mathbf{6}}{\mathbf{5}}$.
(iv) Multiplicative inverse of $\frac{3}{7} \times \frac{4}{7}$ is $\frac{\mathbf{2 1}}{\mathbf{4}}$.
7. (i) $\left(\frac{1}{-4}\right)^{-1}=-\mathbf{4}$
(ii) $\left(\frac{-4}{6} \times \frac{3}{5}\right)^{-1}=\left(\frac{-2}{5}\right)^{-1}=\frac{\mathbf{5}}{\mathbf{- 2}}$
(iii) $\left(\frac{-7}{3}\right)^{-1}=\frac{3}{-7}$

Learning Target 5.5

1. (i) F
(ii) F
(iii) F
(iv) T
(v) T
2. (i) $\frac{-4}{6} \div \frac{3}{2}=\frac{-4}{6} \times \frac{2}{3}=\frac{-\mathbf{4}}{\mathbf{9}}$ (ii) Do yourself.
(iii) $\frac{-15}{7} \div \frac{-30}{1}=\frac{-15}{7} \times \frac{1}{-30}=\frac{\mathbf{1}}{\mathbf{1 4}}$
(iv) $-25 \div\left(\frac{-5}{6}\right) \Rightarrow \frac{-25}{1} \times \frac{6}{-5}=\mathbf{3 0}$
(v) Do yourself.
(vi) $\left(\frac{-16}{35}\right) \div\left(\frac{-15}{14}\right)=\frac{-16}{35} \times \frac{14}{-15}=\frac{16 \times 14}{35 \times 15}=\frac{\mathbf{2 2 4}}{\mathbf{5 2 5}}=\frac{\mathbf{3 2}}{\mathbf{7 5}}$
(vii) Do yourself.
(viii) $\left(\frac{-7}{12}\right) \div\left(\frac{-2}{3}\right)=\frac{-7}{12} \times \frac{3}{-2}=\frac{7}{8}$
3. Let the other number be x.

$$
\begin{aligned}
-\frac{4}{15} \times x & =\frac{-8}{9} \\
x & =\frac{-8}{9} \times \frac{15}{-4} \quad \Rightarrow \quad x=\frac{\mathbf{1 0}}{\mathbf{3}}
\end{aligned}
$$

4. $x \times \frac{-15}{28}=\frac{-5}{7}$

$$
x=\frac{-5}{7} \times \frac{28}{-15} \quad \Rightarrow \quad x=\frac{4}{3}
$$

5. Verify that $(x \div y) \times z \neq x \div(y \times z)$

Taking

$$
x=\frac{8}{15}, y=\frac{2}{3}, z=\frac{4}{10}
$$

$$
\begin{aligned}
\left(\frac{8}{15} \div \frac{2}{3}\right) \times \frac{4}{10} & \neq \frac{8}{15} \div\left(\frac{2}{3} \times \frac{4}{10}\right) \\
\left(\frac{8}{15} \times \frac{3}{2}\right) \times \frac{4}{10} & \neq \frac{8}{15} \div \frac{4}{15} \\
\frac{\mathbf{8}}{\mathbf{2 5}} & \neq \mathbf{2}
\end{aligned}
$$

6. (i) $\frac{13}{5} \div \frac{26}{15}=\frac{26}{15} \div \frac{13}{5}$

$$
\frac{13}{5} \times \frac{15}{26}=\frac{26}{15} \times \frac{5}{13} \quad \Rightarrow \quad \frac{\mathbf{3}}{\mathbf{2}} \neq \frac{\mathbf{2}}{\mathbf{3}}
$$

(ii), (iii) Do yourself.
(iv)

$$
\begin{aligned}
\frac{-6}{15} \div \frac{7}{30} & =\frac{7}{30} \div \frac{-6}{15} \\
\frac{-6}{15} \times \frac{30}{7} & =\frac{7}{30} \times \frac{15}{-6} \\
\frac{\mathbf{- 1 2}}{7} & \neq \frac{7}{-12}
\end{aligned}
$$

7. Sum $=\frac{65}{13}+\frac{5}{7} \quad$ Subtract $=\frac{65}{13}-\frac{5}{7}$

$$
\begin{array}{ll}
=5+\frac{5}{7} & =5-\frac{5}{7} \\
=\frac{40}{7} & =\frac{35-5}{7}=\frac{30}{7}
\end{array}
$$

Divide $=\frac{40}{7} \div \frac{30}{7}=\frac{40}{7} \times \frac{7}{30}=\frac{\mathbf{4}}{\mathbf{3}}$
8. $\operatorname{Sum}=\frac{13}{5}+\frac{-6}{15}$

Product $=\frac{-29}{7} \times \frac{1}{-2}=\frac{29}{14}$

$$
\begin{aligned}
& =\frac{13}{5}-\frac{6}{15}=\frac{13}{5}-\frac{2}{5} \\
& =\frac{11}{5}
\end{aligned}
$$

$$
\text { Divide }=\frac{11}{5} \div \frac{29}{14}
$$

$$
=\frac{11}{5} \times \frac{14}{29}=\frac{154}{145}
$$

9. $\frac{-35}{6} \div x=\frac{-15}{2}$

$$
\begin{aligned}
\frac{35}{6} \times \frac{1}{x} & =\frac{15}{2} \\
x & =\frac{35 \times 2}{6 \times 15} \quad \Rightarrow \quad x=\frac{7}{9}
\end{aligned}
$$

10. Cost of per meter cloth $=\frac{65 \frac{1}{2}}{3 \frac{2}{5}}=\frac{\frac{131}{2}}{\frac{17}{5}}=\frac{131}{2} \times \frac{5}{17}$

$$
=\frac{655}{34}=₹ \mathbf{1 9} \frac{9}{34}
$$

11. Length of cloth required for each pair $=\frac{60}{25}=\mathbf{2} .4$ metre.
12. (i) $\frac{9}{8} \div x=\frac{6}{5}$

$$
\begin{aligned}
\frac{9}{8} \times \frac{1}{x} & =\frac{6}{5} \\
8 \times 6 \times x & =9 \times 5 \\
x & =\frac{9 \times 5}{6 \times 8}=\frac{\mathbf{1 5}}{\mathbf{1 6}}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(-15) \div x=\frac{-6}{5}$

$$
\begin{aligned}
-15 \times \frac{1}{x} & =\frac{-6}{5} & & \Rightarrow
\end{aligned}-6 \times x=5 \times-150
$$

13. Verify $(x \times y)^{-1}=x^{-1} \times y^{-1}$
(i) $x=\frac{11}{23}, y=\frac{-17}{5}$

$$
\begin{aligned}
\left(\frac{11}{23} \times \frac{-17}{5}\right)^{-1} & =\left(\frac{11}{23}\right)^{-1} \times\left(\frac{-17}{5}\right)^{-1} \\
\frac{23}{11} \times \frac{5}{-17} & =\frac{23}{11} \times \frac{5}{-17}
\end{aligned}
$$

(ii) Do yourself.

Learning Target 5.6

1. (i) T
(ii) T
(iii) T
(iv) T
(v) F
(vi) T
(vii) T
(viii) F
(ix) F
(x) F
2. The rational number between -5 and $-4=\frac{-5-4}{2}=\frac{-9}{2}$
3. The rational number between -7 and $-6=\frac{-7-6}{2}=\frac{-13}{2}$

Now a rational number between $\frac{-13}{2}$ and -6 .

$$
\frac{1}{2}\left\{\frac{-13}{2}-6\right\}=\frac{1}{2}\left\{\frac{-25}{2}\right\}=\frac{-25}{4}
$$

A rational number between $\frac{-13}{2}$ and -7 .

$$
\frac{1}{2}\left\{\frac{-13}{2}-7\right\}=\frac{1}{2}\left\{\frac{-27}{2}\right\}=\frac{-27}{4}
$$

The desired rational numbers are $\frac{-27}{4}, \frac{-13}{2}, \frac{-25}{4}$.
4. The rational number between -1 and 1

$$
=\frac{-1+1}{2}=\frac{0}{2}=0 ;-1<0<1
$$

Now a rational number between -1 and 0 .

$$
=\frac{1}{2}\{-1+0\}=\frac{-1}{2} \Rightarrow-1<\frac{-1}{2}<0<1
$$

A rational number between 0 and $1=\frac{0+1}{2}=\frac{1}{2}$

$$
-1<-\frac{1}{2}<0<\frac{1}{2}<1
$$

A rational number between $\frac{1}{2}$ and $0=\frac{\frac{1}{2}+0}{2}=\frac{1}{4}$

$$
-1<-\frac{1}{2}<0<\frac{1}{4}<\frac{1}{2}<1
$$

A rational number between 0 and $\frac{-1}{2}=\frac{0-\frac{1}{2}}{2}=\frac{-1}{4}$

$$
-1<\frac{-1}{2}<\frac{-1}{4}<0<\frac{1}{4}<\frac{1}{2}<1
$$

The desired rational numbers are $\frac{-1}{2}, \frac{-1}{4}, 0, \frac{1}{4}, \frac{1}{2}$.
5. 4 rational numbers between $\frac{3}{4}$ and $\frac{2}{3}$, firstly equating the denominator of both, we get $\frac{9}{12}$ and $\frac{8}{12}$.
$\frac{8}{12}<\frac{9}{12}$, the rational number could be $\frac{8+9}{12 \times 2}=\frac{17}{24}$, equating denominator of both, we get $\frac{16}{24}<\frac{17}{24}<\frac{18}{24}$ other is $\frac{17+18}{24 \times 2}=\frac{35}{48}$, another is $\frac{16+17}{24 \times 2}=\frac{33}{48}$ another is $\frac{33+34}{48 \times 2}=\frac{67}{96}$.
The desired four rational numbers are $\frac{17}{24}, \frac{35}{48}, \frac{33}{48}$ and $\frac{23}{32}$.

6.

Exponents and Powers

Learning Target 6.1

1. (i) T
(ii) T
(iii) T
(iv) F
(v) T
(vi) F
2. (i) $\left(\frac{3}{7}\right)^{2}=\frac{3 \times 3}{7 \times 7}=\frac{\mathbf{9}}{\mathbf{4 9}}$
(ii) Do yourself.
(iii) $\left(\frac{-2}{3}\right)^{4}=\frac{-2 \times-2 \times-2 \times-2}{3 \times 3 \times 3 \times 3}=\frac{\mathbf{1 6}}{\mathbf{8 1}}$
3. (i) $\left(\frac{3}{5}\right)^{4} \times\left(\frac{1}{3}\right)^{3}=\frac{3 \times 3 \times 3 \times 3 \times 1 \times 1 \times 1}{5 \times 5 \times 5 \times 5 \times 3 \times 3 \times 3}=\frac{\mathbf{3}}{\mathbf{6 2 5}}$
(ii) Do yourself.
(iii) $\left(\frac{1}{3}\right)^{4} \div\left(\frac{1}{9}\right)^{6}=\frac{1 \times 1 \times 1 \times 1}{3 \times 3 \times 3 \times 3} \times \frac{9 \times 9 \times 9 \times 9 \times 9 \times 9}{1 \times 1 \times 1 \times 1 \times 1 \times 1}$

$$
=\frac{6561}{1}=6561
$$

(iv) $(-2)^{5} \div\left(\frac{-1}{3}\right)^{3}=(-2)^{5} \times\left(\frac{-3}{1}\right)^{3}$

$$
\begin{aligned}
& =-2 \times-2 \times-2 \times-2 \times-2 \times-3 \times-3 \times-3 \\
& =32 \times 27=\mathbf{8 6 4}
\end{aligned}
$$

4. (i) $\left(\frac{3}{4}\right)^{3} \times\left(\frac{2}{3}\right)^{2}=\frac{3 \times 3 \times 3 \times 2 \times 2}{4 \times 4 \times 4 \times 3 \times 3}=\frac{\mathbf{3}}{\mathbf{1 6}}$
(ii) $\left(-\frac{1}{2}\right)^{3} \times 2^{3} \times\left(\frac{3}{4}\right)^{2}=\frac{-1}{8} \times 8 \times \frac{9}{16}=\frac{-9}{16}$
(iii) $\left[\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{4}\right)^{3}\right] \times 2^{3}=\left[\frac{1}{4}-\frac{1}{64}\right] \times 8=\frac{15}{64} \times 8=\frac{\mathbf{1 5}}{\mathbf{8}}$

$$
\text { (iv) } \begin{aligned}
\left(3^{2}-2^{2}\right) \div\left(\frac{1}{5}\right)^{2} & =(9-4) \div \frac{1}{5 \times 5} \\
5 \div \frac{1}{25}=5 \times \frac{25}{1} & =\mathbf{1 2 5}
\end{aligned}
$$

5. (i) $\frac{1}{243}=\frac{1}{3^{5}}=\left(\frac{\mathbf{1}}{\mathbf{3}}\right)^{\mathbf{5}} \quad$ (ii) $\frac{-16}{729}=-\left(\frac{\mathbf{4}}{\mathbf{2 7}}\right)^{\mathbf{2}}$
(iii) $\frac{-625}{14641}=-\left(\frac{\mathbf{5}}{\mathbf{1 1}}\right)^{4}$
(iv) $\frac{-2401}{-256}=\frac{2401}{256}=\left(\frac{7}{4}\right)^{4}$
6. (i) $(-3)^{5}=-243$
(ii) Do yourself.

Reciprocal $=\frac{\mathbf{- 1}}{\mathbf{2 4 3}}$
(iii) $\left(-\frac{1}{5}\right)^{8} \div\left(\frac{1}{5}\right)^{2}=\left(+\frac{1}{5}\right)^{6}=\frac{1}{15625}$

Reciprocal $=15625$
(iv) $\left(\frac{3}{7}\right)^{3} \times\left(\frac{7}{3}\right)^{5}=\left(\frac{3}{7}\right)^{3} \times\left(\frac{3}{7}\right)^{-5}=\left(\frac{3}{7}\right)^{-2}=\left(\frac{7}{3}\right)^{2}=\frac{49}{9}$

$$
\text { Reciprocal }=\frac{9}{49}
$$

7. (i)

$$
\begin{aligned}
2^{3} \times 2^{4} & =2^{x} \\
2^{3+4} & =2^{x} \quad \Rightarrow \quad 2^{7}=2^{x} \\
x & =7
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(-4)^{9} \div(-4)^{3}=(-4)^{x}$

$$
\begin{aligned}
(-4)^{9-3} & =(-4)^{x} \\
(-4)^{6} & =(-4)^{x} \quad \Rightarrow \quad x=6
\end{aligned}
$$

(v) $\frac{8^{13}}{8^{19}}=\frac{1}{8^{x}}$

By cross multiplication, we get

$$
\begin{aligned}
& & 8^{13+x} & =8^{19} \\
\Rightarrow & & 13+x & =19 \\
\Rightarrow & & x & =19-13=\mathbf{6}
\end{aligned}
$$

(vi) $(-4)^{11} \div(-4)^{15}=\frac{1}{(-4)^{x}}$

$$
(-4)^{11-15}=\frac{1}{(-4)^{x}}
$$

$$
\begin{aligned}
(-4)^{-4} & =\frac{1}{(-4)^{x}} \Rightarrow \frac{1}{(-4)^{4}}=\frac{1}{(-4)^{x}} \\
\Rightarrow \quad x & =4
\end{aligned}
$$

Learning Target 6.2

1. (i) $3.27 \times 10^{6}=\mathbf{3 2 7 0 0 0 0}$
(ii), (iii) Do it yourself.
(iv) $3.127 \times 10^{-7}=\mathbf{0 . 0 0 0 0 0 0 3 1 2 7}$
(v) Do it yourself.
2. (i) $476000=\mathbf{4 . 7 6} \times \mathbf{1 0}^{\mathbf{5}}$
(ii) $8460 \times 10^{3}=\mathbf{8 . 4 6} \times \mathbf{1 0}^{\mathbf{6}}$
(iii) $0.00025=\mathbf{2 . 5} \times \mathbf{1 0}^{-4}$
(iv) $\frac{4}{100000}=\frac{4}{10^{5}}=\mathbf{4} \times \mathbf{1 0}^{-\mathbf{5}}$
(v) $3246=\mathbf{3 . 2 4 6} \times \mathbf{1 0}^{\mathbf{3}}$
3. (i) $6.5 \times 10^{-6}=\mathbf{0 . 0 0 0 0 0 6 5}$
(ii) Do yourself.
(iii) $5.6146929 \times 10^{7}=\mathbf{5 6 1 4 6 9 2 9}$
(iv), (v) Do yourself.
4. (i) $980000000, n=8=\mathbf{9 . 8} \times \mathbf{1 0}^{\mathbf{8}}$
(ii), (iii) Do yourself.
(iv) $10700000000, n=9=10.7 \times \mathbf{1 0}^{9}$
5. (i) $1050000=\mathbf{1 . 0 5} \times \mathbf{1 0}^{\mathbf{6}}$
(ii) $1353000000=\mathbf{1 . 3 5 3} \times \mathbf{1 0}^{9}$

$$
1361000000=1.361 \times \mathbf{1 0}^{\mathbf{9}}
$$

(iii) $1027000000=\mathbf{1 . 0 2 7} \times \mathbf{1 0}^{9}$

$$
531200000=5.312 \times \mathbf{1 0}^{\mathbf{8}}
$$

$$
495800000=4.958 \times 10^{\mathbf{8}}
$$

(iv) $\frac{1}{1000000}=\frac{1}{10^{6}}=\mathbf{1} \times \mathbf{1 0}^{-6}$

Apply Your Mind!

1. (a)
2. (a)
3. (c)
4. (a)
5. (a)
6. (b)

7.
 Algebraic Expressions

Learning Target 7.1

1. (i) 3
(ii) $\frac{-7}{2}$
(iii) 5
(iv) -1
2. (i) x^{2}
(ii) x
(iii) $x y^{2}$
(iv) $x y z$
(v) x^{4}
3. (i) $\frac{3}{5}$ (ii)
-7 (iii)
$\frac{1}{2}$ (iv)
1
4. (i) binomial (ii) trinomial (iii) monomial (iv) trinomial (v) binomial
5. (i) $-2 x^{2}, x^{2}, 3 x^{2},-15 x^{2} \quad$ (ii) $-5 a b, a b,-a b, 2 a b$
(iii) $m n,-m n, 2 m n,-2 m n$ (iv) $x y^{2},-x y^{2}, 2 x y^{2},-2 x y^{2}$
(v) $p x,-p x, 2 p x,-2 p x$.

Learning Target 7.2

1. (i) $7 x \times 5 x^{2}=\mathbf{3 5} \boldsymbol{x}^{\mathbf{3}}$
(ii) $-5 x^{3} \times 7 x^{2}=-\mathbf{3 5} \boldsymbol{x}^{\mathbf{5}}$
(iii) $20 x \times\left(-25 x^{2} y\right)=-500 \boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}$
(iv) $2 a^{2} b c \times 4 a b^{2}=\mathbf{8 a}^{\mathbf{3}} \boldsymbol{b}^{\mathbf{3}} \boldsymbol{c}$
(v) $\frac{5}{7} \times x^{3} \times \frac{-28}{45} x^{4}=\frac{-\mathbf{4}}{\mathbf{9}} \times \boldsymbol{x}^{7}$
(vi) $\frac{-8}{5} a^{3} b \times \frac{15}{16} a b c^{2}=\frac{-\mathbf{3}}{\mathbf{2}} \boldsymbol{a}^{\mathbf{4}} \boldsymbol{b}^{\mathbf{2}} \boldsymbol{c}^{\mathbf{2}}$
(vii) Do yourself.
(viii) $\left(-\frac{1}{27} a^{2} b^{2}\right) \times\left(-\frac{9}{2} a^{3} b^{2} c^{2}\right)=\frac{\mathbf{1}}{\mathbf{6}} \boldsymbol{a}^{\mathbf{5}} \boldsymbol{b}^{\mathbf{4}} \boldsymbol{c}^{\mathbf{2}}$
(ix) $3.2 x^{6} y^{3} \times 0.5 x^{2} y^{2}=\frac{32}{10} x^{6} y^{3} \times \frac{5}{10} x^{2} y^{2}$

$$
=\frac{160}{100} x^{8} y^{5}=\frac{8}{5} x^{8} y^{5}=1.6 x^{8} y^{5}
$$

(x) $x^{-6} \times x^{7} \times(-2 x)=-2 x^{-6+7+1}=-\mathbf{2} \boldsymbol{x}^{\mathbf{2}}$
(xi) $\left(-2 x^{2}\right) \times\left(7 x^{2}\right) \times\left(6 x^{3}\right)=-\mathbf{8 4} \boldsymbol{x}^{7}$

Put $x=1$ in both sides

$$
\begin{aligned}
\left(-2 \times 1^{2}\right)\left(7 \times 1^{2}\right) & \left(6 \times 1^{3}\right)=-84 \times 1 \\
-84=-84 & \text { Hence proved. }
\end{aligned}
$$

(xii) $2 a b \times\left(-5 a^{2}\right) \times\left(-4.4 a^{2} b\right)$

$$
=44 a^{2+1+2} b^{1+1}=44 a^{\mathbf{5}} \boldsymbol{b}^{\mathbf{2}}
$$

When

$$
a=-1, b=2
$$

$$
=44 \times(-1)^{5} \times(2)^{2}=-44 \times 4=-176
$$

(xiii) $a=1, b=2$

$$
\begin{aligned}
& =\left(5 a^{6}\right)\left(-10 a b^{2}\right)\left(-2 a^{2} b^{3}\right) \\
& =100 a^{6+2+1} b^{2+3}=100 a^{9} b^{5} \\
& =100 \times(1)^{9} \times(2)^{5}=100 \times 1 \times 32=\mathbf{3 2 0 0}
\end{aligned}
$$

2. (i) $a^{7} \times a^{10} \times a^{-3} a^{7+10-3}=a^{7+7}=\boldsymbol{a}^{\mathbf{1 4}}$
(ii) $x^{-5} \times\left(-2 x^{3}\right) \times 7 x^{5}=-14 x^{-5+3+5}=-\mathbf{1 4} \boldsymbol{x}^{\mathbf{3}}$

Learning Target 7.3

1. (i) $5 a\left(a^{2}+a+3\right)=5 a \times a^{2}+5 a \times a+5 a \times 3$

$$
=5 a^{3}+5 a^{2}+15 a
$$

(ii) Do yourself.
(iii) $0.1 a(0.01 a+0.0016)=\frac{1}{10} a\left(\frac{a}{100}+\frac{16}{10000}\right)$

$$
=\frac{a^{2}}{1000}+\frac{16 a}{100000}
$$

2. (i) $(3 x+5) \times 7 x=3 x \times 7 x+5 \times 7 x=\mathbf{2 1} \boldsymbol{x}^{2}+\mathbf{3 5 x}$
(ii), (iii) Do yourself.
(iv) $\left(5 x^{2}+7 x\right) \times 5 x^{2}=\mathbf{2 5} \boldsymbol{x}^{\mathbf{4}}+\mathbf{3 5} \boldsymbol{x}^{\mathbf{3}}$
(v) $\left(\frac{1}{2} x-\frac{1}{3} y\right) \times 6 x y=\frac{1}{2} \times 6 x^{2} y-\frac{6}{3} x y^{2}=\mathbf{3 x}^{2} \boldsymbol{y}-\mathbf{2 x y}{ }^{\mathbf{2}}$
(vi) $(0.2 a-0.1 b) \times 0.3 a b=0.2 a \times 0.3 a b-0.1 b \times 0.3 a b$

$$
=0.06 a^{2} b-0.03 a b^{2}
$$

3. (i) $(2 x+9) \times(6 x+5)=2 x \times 6 x+6 x \times 9+5 \times 2 x+45$

$$
\begin{aligned}
& =12 x^{2}+54 x+10 x+45 \\
& =\mathbf{1 2} \boldsymbol{x}^{\mathbf{2}}+\mathbf{6 4} \boldsymbol{x}+\mathbf{4 5}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(2.5 a+2.3 b) \times(2.5 a-2.3 b)=(2.5 a)^{2}-(2.3 b)^{2}$

$$
=6.25 a^{2}-5.29 b^{2}
$$

4. (i) $a(a-b)+b(a-b)=a^{2}-a b+a b-b^{2}=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$
(ii) Do yourself.
(iii) $a\left(a^{2}+1\right)+b\left(b^{2}+1\right)-(a+b)=a^{3}+a+b^{3}+b-a-b$

$$
=a^{3}+b^{3}
$$

(iv) Do yourself.
5. (i) $(2 x-5) \times(7+4 x)=2 x \times 7-35+2 x \times 4 x-5 \times 4 x$

$$
=14 x-35+8 x^{2}-20 x
$$

$$
=8 x^{2}-6 x-35
$$

If

$$
\begin{aligned}
(x=2) & =8(2)^{2}-6(2)-35 \\
& =8 \times 4-12-35 \\
& =32-12-35=-\mathbf{1 5}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $\quad\left(p^{2}-q^{2}\right)(p-q)=\boldsymbol{p}^{\mathbf{3}}-\boldsymbol{p} \boldsymbol{q}^{\mathbf{2}}-\boldsymbol{p}^{\mathbf{2}} \boldsymbol{q}+\boldsymbol{q}^{\mathbf{3}}$

If

$$
p=2, q=0=(2)^{3}-(2) \times 0-(2)^{2} \times 0+0=8
$$

6. (i) $(2 x+3 y)\left(4 x^{2} y+5 x y^{2}\right)$

$$
\begin{aligned}
& =8 x^{3} y+12 x^{2} y^{2}+10 x^{2} y^{2}+15 x y^{3} \\
& =\mathbf{8} \boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}+\mathbf{2 2} \boldsymbol{x}^{\mathbf{2}} \boldsymbol{y}^{\mathbf{2}}+\mathbf{1 5} \boldsymbol{x} \boldsymbol{y}^{\mathbf{3}}
\end{aligned}
$$

(ii) $\left(a^{5}+5\right)\left(b^{3}+3\right)+4=a^{5} b^{3}+5 b^{3}+3 a^{5}+15+4$

$$
=a^{5} b^{3}+5 b^{3}+3 a^{5}+19
$$

(iii) $(a+b c d)\left(a^{3}+b^{3} c^{3} d^{3}\right)$

$$
=a^{4}+a b^{3} c^{3} d^{3}+a^{3} b c d+b^{4} c^{4} d^{4}
$$

(iv) $\left(t^{2}+s^{3}\right)\left(t^{2}-s^{3}\right)$ is of the form $(a+b)(a-b)=a^{2}-b^{2}$

$$
=\left(t^{2}\right)^{2}-\left(s^{3}\right)^{2}=\boldsymbol{t}^{\mathbf{4}}-\boldsymbol{s}^{\mathbf{6}}
$$

7. (i) $-x^{2} y z\left(x y^{2} z-x^{2} z\right)=-x^{3} y^{3} z^{2}+x^{4} y z^{2}$

If $x=-1, y=1, z=2$

$$
=-(-1)^{3}(1)^{3}(2)^{2}+(-1)^{4}(1)(2)^{2}
$$

$$
=1 \cdot 1 \cdot 4+1 \cdot 1 \cdot 4=4+4=8
$$

(ii) Do yourself.
8. (i) $(1.5 x-4 y)(1.5 x+4 y+3)$

$$
\begin{aligned}
& =1.5 x+(1.5 x+4 y+3)-4 y(1.5 x+4 y+3) \\
& =2.25 x^{2}+6 x y+4.5 x-6 x y-16 y^{2}-12 y \\
& =\mathbf{2 . 2 5} \boldsymbol{x}^{\mathbf{2}}-\mathbf{1 6} \mathbf{y}^{\mathbf{2}}+\mathbf{4 . 5 x}-\mathbf{1 2} \mathbf{y}
\end{aligned}
$$

(ii) Do yourself.
9. (i) $(3 x+4)(2 x-3)+(5 x-4)(x+2)$

$$
\begin{aligned}
& =3 x(2 x-3)+4 \\
& =(2 x-3)+5 x(x+2)-4(x+2) \\
& =6 x^{2}-9 x+8 x-12+5 x^{2}+10 x-4 x-8 \\
& =\mathbf{1 1} \boldsymbol{x}^{\mathbf{2}}+\mathbf{5 x}-\mathbf{2 0}
\end{aligned}
$$

(ii) Do yourself.
(iii) $\left(x^{2}-5 x+6\right)(2 x-3)-\left(3 x^{2}+4 x-5\right)(x-2)$

$$
\left.\begin{array}{r}
\begin{array}{r}
=2 x\left(x^{2}-5 x+6\right)-3\left(x^{2}-5 x+6\right) \\
\\
+2\left(3 x^{2}+4 x-5\right) \\
=2 x^{3}-10 x^{2}+12 x-3 x^{2}+15 x-18-3 x^{3}-4 x^{2}
\end{array} \\
+5 x+6 x^{2}+8 x-10
\end{array}\right)
$$

10. (i) $(x+2 y) \times(2 x-9 y+7)$

$$
\begin{aligned}
& =2 x^{2}-9 x y+7 x+4 x y-18 y^{2}+14 y \\
& =\mathbf{2} \boldsymbol{x}^{\mathbf{2}}-\mathbf{1 8} \boldsymbol{y}^{\mathbf{2}}-\mathbf{5 x y}+\mathbf{7 x}+\mathbf{1 4 y}
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $(a+b+c) \times\left(a^{3}-b^{3}\right)$

$$
=a^{4}-a b^{3}+a^{3} b-b^{4}+a^{3} c-c b^{3}
$$

11. (i) $(x+y)\left(x^{2}-x y+y^{2}\right)$

$$
\begin{aligned}
& =x\left(x^{2}-x y+y^{2}\right)+y\left(x^{2}-x y+y^{2}\right) \\
& =x^{3}-x^{2} y+x y^{2}+x^{2} y-x y^{2}+y^{3} \\
& =\boldsymbol{x}^{\mathbf{3}}+\mathbf{y}^{\mathbf{3}}
\end{aligned}
$$

(ii) $x^{2}+(3 x-y)\left(3 x+y+y^{2}\right)$

$$
\begin{aligned}
& =x^{2}+9 x^{2}+3 x y+3 x y^{2}-3 x y-y^{2}-y^{3} \\
& =\mathbf{1 0} \boldsymbol{x}^{\mathbf{2}}-\mathbf{y}^{\mathbf{2}}-\mathbf{y}^{\mathbf{3}}+\mathbf{3 x y}^{\mathbf{2}}
\end{aligned}
$$

(iii) $x\left(x+y^{2}+z\right)+y^{2}(x+y+z)-z\left(z+y^{2}\right)$

$$
\begin{aligned}
& =x^{2}+x y^{2}+z x+x y^{2}+y^{3}+y^{2} z-z x-z y^{2} \\
& =\boldsymbol{x}^{\mathbf{2}}+\mathbf{2} \boldsymbol{x} \boldsymbol{y}^{\mathbf{2}}+\mathbf{y}^{\mathbf{3}}
\end{aligned}
$$

12. (i) We put $x=1, y=1$ and $z=2$

LHS

$$
\begin{aligned}
(x+y)\left(x^{2}-x y+y^{2}\right) & =(1+1)\left(1^{2}-1 \times 1+1^{2}\right) \\
& =2 \times(1-1+1)=2 \times 1=2
\end{aligned}
$$

RHS

$$
\begin{aligned}
x^{3}+y^{3} & =1^{3}+1^{3}=1+1=2 \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

(ii), (iii) Do yourself.

Learning Target 7.4

1. (i) $4 x+6=4 \times 3+6=12+6=\mathbf{1 8}$
(ii) $-6 y+4=-6 \times-2+4=12+4=\mathbf{1 6}$
(iii), (iv) Do yourself.
2. (i) $5 a^{3}+2 a^{2}-3=5 \times-2^{3}+2 \times-2^{2}-3$

$$
\begin{aligned}
& =5 \times-8+2 \times 4-3 \\
& =-40+8-3=-\mathbf{3 5}
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
3. (i) $m^{2}+3 m n-n^{2}$

$$
\begin{aligned}
& 2^{2}+3 \times 2 \times-1-(-1)^{2} \\
& 4-6-1=4-7=-\mathbf{3}
\end{aligned}
$$

(ii), (iii), (iv) Do yourself.
4.

$$
\begin{aligned}
5 y^{2}+6 y-a & =8 \\
5 \times 2^{2}+6 \times 2-a & =8 \\
5 \times 4+12-a & =8 \\
20+12-a & =8 \\
-a & =8-32 \\
-a & =-24 \\
a & =\mathbf{2 4}
\end{aligned}
$$

5.

$$
\begin{aligned}
6 m^{2}-5 m n+2 b & =-10 \\
6 \times 1^{2}-5 \times 1^{2} \times-2+2 b & =-10 \\
6 \times 1+5 \times 2+2 b & =-10 \\
6+10+2 b & =-10 \\
2 b & =-10-16 \\
b & =-\frac{26}{2}=-\mathbf{1 3}
\end{aligned}
$$

6. (i)

$$
\begin{aligned}
8 a & =35^{2}-27^{2} \\
8 a & =(35)^{2}-(27)^{2} \\
8 a & =(35+27)(35-27) \\
8 a & =62 \times 8 \\
a & =\frac{62 \times 8}{8}=\mathbf{6 2}
\end{aligned}
$$

(ii) Do yourself.

Apply Your Mind!

1. (b)
2. (b)
3. (c)
4. (a)
5.

Linear Equations in One Variable

Learning Target 8.1

1.

$$
\begin{aligned}
5 x-3 & =3 x-5 \\
5 x-3 x & =-5+3 \quad \Rightarrow \quad 2 x=-2 \\
x & =\frac{-2}{2}=-1
\end{aligned}
$$

2. $\quad \frac{x}{5}+1=\frac{1}{15} \quad \Rightarrow \quad \frac{x}{5}=\frac{1}{15}-1$

$$
\begin{aligned}
\frac{x}{5} & =\frac{1-15}{15} \Rightarrow \frac{x}{5}=\frac{-14}{15} \\
x & =\frac{-14}{3}
\end{aligned}
$$

3. Do yourself.
4.

$$
\begin{array}{rlrl}
\frac{x-8}{3} & =\frac{x-3}{5} & & \\
5(x-8) & =3(x-3) & & \\
5 x-40 & =3 x-9 & & \Rightarrow \\
2 x & =31 \quad 5 x-3 x=-9+40 \\
5 & & \Rightarrow x=\frac{\mathbf{3 1}}{\mathbf{2}}
\end{array}
$$

5. Do yourself.
6. $x+7-\frac{16 x}{3}=12-\frac{7 x}{2}$

$$
\begin{array}{rlrl}
x-\frac{16 x}{3}+\frac{7 x}{2} & =12-7 & \Rightarrow & x\left(1-\frac{16}{3}+\frac{7}{2}\right)=5 \\
x\left[\frac{6-32+21}{6}\right] & =5 & & \\
x(-5) & =30 & & x\left(\frac{27-32}{6}\right)=5 \\
x & =-6
\end{array}
$$

7. Do yourself.
8. $\frac{3 t-2}{3}+\frac{2 t+3}{3}=t+\frac{7}{6}$

$$
\begin{array}{r}
\frac{3 t}{3}-\frac{2}{3}+\frac{2 t}{3}+\frac{3}{3}=t+\frac{7}{6} \\
t-\frac{2}{3}+\frac{2 t}{3}+1=t+\frac{7}{6}
\end{array}
$$

$$
\begin{aligned}
t+\frac{2 t}{3}-t & =\frac{7}{6}+\frac{2}{3}-1 \\
t\left(1+\frac{2}{3}-1\right) & =\frac{7+4-6}{6} \\
\frac{2}{3} t & =\frac{11-6}{6} \quad \Rightarrow \quad \frac{2}{3} t=\frac{5}{6} \\
t & =\frac{5}{6} \times \frac{3}{2} \quad \Rightarrow \quad t=\frac{\mathbf{5}}{\mathbf{4}}
\end{aligned}
$$

9. $3(x-3)=5(2 x+1) \Rightarrow 3 x-9=10 x+5$

$$
7 x+14=0
$$

$$
\Rightarrow \quad x=-2
$$

10. $15(y-4)-2(y-9)+5(y+6)=0$

$$
\begin{aligned}
15 y-60-2 y+18+5 y+30 & =0 \\
15 y-2 y+5 y & =60-30-18 \\
y(15-2+5) & =60-48 \\
18 y & =12 \\
\Rightarrow \quad y & =\frac{12}{18} \quad \Rightarrow \quad y=\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

11. Do yourself.
12. $4(3 w+2)-5(6 w-1)=2(w-8)-6(7 w-4)+4 w$

$$
12 w+8-30 w+5=2 w-16-42 w+24+4 w
$$

$$
(12 w-30 w-2 w+42 w-4 w)=-8-5-16+24
$$

$$
w(12+42-30-2-4)=-5
$$

$$
18 w=-5 \Rightarrow w=\frac{-\mathbf{5}}{\mathbf{1 8}}
$$

13.

$$
\begin{aligned}
0.25(4 y-3) & =0.5 y-9 \\
\frac{25}{100}(4 y-3) & =\frac{5}{10} y-9 \\
\frac{25 \times 4 y}{100}-\frac{25 \times 3}{100} & =\frac{5 y}{10}-9 \\
y-\frac{y}{2} & =-9+\frac{3}{4} \\
\frac{y}{2} & =\frac{-36+3}{4} \\
\frac{y}{2} & =\frac{-33}{4} \\
y & =\frac{-\mathbf{3 3}}{2}
\end{aligned}
$$

14.

$$
\begin{aligned}
0.16(5 x-2) & =0.4 x+7 \\
0.16 \times 5 x-0.16 \times 2 & =0.4 x+7 \\
\frac{16 \times 5 x}{100}-\frac{16 \times 2}{100} & =\frac{4 x}{10}+7 \\
\frac{80 x}{100}-\frac{4 x}{10} & =7+\frac{32}{100} \\
x\left(\frac{8}{10}-\frac{4}{10}\right) & =\frac{732}{100} \Rightarrow \frac{4 x}{10}=\frac{732}{100} \\
\Rightarrow \quad 4 x & =\frac{732}{10} \Rightarrow x=\frac{183}{10} \\
\Rightarrow \quad x & =\mathbf{1 8 . 3}
\end{aligned}
$$

15. $2.25(2 z+8)=5 z-3$

$$
4.50 z+18.00=5 z-3
$$

$$
18+3=(5-4.5) z
$$

$$
21=0.5 z
$$

$$
\frac{21}{0.5}=z \quad \Rightarrow \quad z=42
$$

16.

$$
\begin{aligned}
x-\frac{2 x}{3}+\frac{x}{2} & =15 \\
\frac{6 x-4 x+3 x}{6} & =15 \quad \Rightarrow \quad 9 x-4 x=90 \\
5 x & =90 \quad \Rightarrow \quad x=18
\end{aligned}
$$

17. $\frac{x}{2}-\frac{1}{4}=\frac{x}{3}+\frac{1}{2}$
18.

$$
\begin{aligned}
2 x-3(x+1) & =5 x-7 \\
2 x-3 x-3 & =5 x-7 \\
5 x-2 x+3 x & =-3+7 \\
6 x & =4 \\
x & =\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

19.

$$
\begin{aligned}
& \frac{4 z-3}{4}-3=\frac{5 z-7}{3}-4 z-1 \\
& \frac{4 z}{4}-\frac{3}{4}-3=\frac{5 z}{3}-\frac{7}{3}-4 z-1 \\
& z-\frac{5}{3} z+4 z=\frac{3}{4}+3-\frac{7}{3}-1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{2}-\frac{x}{3}=\frac{1}{2}+\frac{1}{4} \quad \Rightarrow \quad \frac{3 x-2 x}{6}=\frac{2+1}{4} \\
& \frac{x}{6}=\frac{3}{4} \quad \Rightarrow \quad x=\frac{3 \times 6}{4}=\frac{9}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{3 z-5 z+12 z}{3} & =\frac{9+36-28-12}{12} \\
\frac{10 z}{3} & =\frac{5}{12} \quad \Rightarrow \quad \frac{2 z}{1}=\frac{1}{4} \\
\Rightarrow \quad z & =\frac{\mathbf{1}}{\mathbf{8}}
\end{aligned}
$$

20.

$$
\begin{aligned}
18 y+3 y-\frac{3}{5} & =21+5 y-2 y \\
18 y+3 y-5 y+2 y & =21+\frac{3}{5} \\
18 y & =\frac{108}{5} \Rightarrow y=\frac{108}{5 \times 18} \\
\Rightarrow \quad y & =\frac{\mathbf{6}}{\mathbf{5}}
\end{aligned}
$$

Learning Target 8.2

1. Let the one number be x and other $95-x$.

$$
\begin{aligned}
x+3 & =95-x \\
2 x & =95-3 \\
2 x & =92 \\
x & =\frac{92}{2}=46
\end{aligned}
$$

Therefore the numbers are 46 and 49.
2. Let the number be $x, x+1$ and $x+2$.

$$
\begin{aligned}
x+x+1+x+2 & =24 \\
3 x+3 & =24 \\
3 x & =24-3 \\
3 x & =21=7
\end{aligned}
$$

Therefore the numbers are $7,7+1,7+2=\mathbf{7 , 8}$ and 9 .
3. Let the number be x.

$$
\begin{aligned}
2 x+7 & =49 & & \\
2 x & =49-7 & & \Rightarrow \quad 2 x=42 \\
\Rightarrow \quad x & =\frac{42}{2} & & \Rightarrow \quad x=\mathbf{2 1}
\end{aligned}
$$

4. Let the number be x.

$$
\begin{aligned}
3 x-22 & =68 \\
3 x & =68+22 \\
3 x & =90 \\
\Rightarrow \quad x & =\frac{90}{3} \Rightarrow x=\mathbf{3 0}
\end{aligned}
$$

5. Let the number be x.

$$
\begin{aligned}
7 x-3 & =53 \\
7 x & =56 \\
x & =\mathbf{8}
\end{aligned}
$$

6. Let x be the number of 10 rupee note and y that of 50 rupee note.

Given that, $\quad 10 x+50 y=250$
and $\quad x=y+1$
Putting the value of x from equation (2) in equation (1).
We get, $\quad 10(y+1)+50 y=250$

$$
10 y+10+50 y=250
$$

$$
60 y=240
$$

$$
y=\frac{240}{60}=4
$$

From equation (2).

$$
x=y+1, x=4+1=5
$$

Number of 10 rupee note $=\mathbf{5}$, Number of 50 rupee note $=\mathbf{4}$
7.

Let the breadth $=x$
And Length $=2 x+2$
Perimeter of rectangle $=2 \times(l+b)$ $28=2 \times(x+2 x+2)$ $14=3 x+2$
$\Rightarrow \quad 3 x=12$
$\Rightarrow \quad x=4$
Breadth $=\mathbf{4} \mathbf{~ c m}$, Length $=10 \mathbf{c m}$.
8. Let subramaniam's age $=x$

Mother's age $=6 x$
After 5 years, $x+5+20=6 x+5$

$$
x+25=6 x+5
$$

$$
25-5=6 x-x
$$

$$
20=5 x \Rightarrow x=4
$$

4 years and $6 \times 4=\mathbf{2 4}$ years.
9. Let breadth be x and length be $x+4$.

Perimeter of the rectangle $=2 \times$ (length + breadth)

$$
\begin{aligned}
& 84=2 \times(x+4+x) \\
& 42=2 x+4 \\
& 42-4=2 x \\
& 38=2 x \Rightarrow x=19 \\
& \Rightarrow \quad \text { Breadth }=\mathbf{1 9} \mathbf{~ m} \text { Length }=\mathbf{2 3} \mathbf{~ m}
\end{aligned}
$$

10. Let the present age of Sheela be x.

After 15 years,

$$
\begin{aligned}
x+15 & =4 x \\
3 x & =15 \quad \Rightarrow \quad x=5
\end{aligned}
$$

\therefore Present age of Sheela is $\mathbf{5}$ years.
11. Let the one prize $=x$; and other prize $=(63-x)$

$$
\begin{aligned}
100 x+(63-x) \times 25 & =3000 \\
100 x+1575-25 x & =3000 \\
75 x & =1425 \Rightarrow x=\frac{1425}{75}=19 \\
19,63-19 & =44
\end{aligned}
$$

Number of 100 rupee prizes $=19$, Number of 25 rupee prizes $=44$
12. Let the one $=x$ and other prize $=(200-x)$
$500 x+(200-x) \times 100=50000$
$500 x+20000-100 x=50000$
$400 x=30000$
$\therefore x=75, \therefore$ Other prize $=200-x=200-75=125$
Number of 500 rupee prizes $=\mathbf{7 5}$ and Number of 100 rupee prizes

$$
=125
$$

13. Let the total worth of Shanti Lal's property be x.

$$
\begin{aligned}
\text { Son's share } & =\frac{x}{5} \\
\text { Daughter's share } & =\frac{x}{5} \\
\text { Wife's share } & =\frac{3 x}{5} \\
\text { If wife's share } & =288000 \\
288000 & =\frac{3 x}{5} \\
3 x & =288000 \times 5 \\
x & =\frac{288000 \times 5}{3} \\
& =₹ \mathbf{4 8 0 0 0 0}
\end{aligned}
$$

₹ $\mathbf{4 8 0 0 0 0}$ is total worth of Shanti Lal.
14. Let one part $=x$ and other part $=x+10$.

$$
\begin{aligned}
\frac{x}{x+10} & =\frac{3}{5} \\
5 x & =3 x+30 \\
5 x-3 x & =30
\end{aligned}
$$

$$
\Rightarrow \quad \begin{aligned}
2 x & =30 \\
x & =15 \\
\text { First part } & =\mathbf{1 5} \text { and other }=\mathbf{2 5} \\
\text { Total number } & =15+25=\mathbf{4 0}
\end{aligned}
$$

15. Let the boys $=x$, and girls $=\frac{2 x}{5}$

$$
\begin{aligned}
& & \frac{2 x}{5}+x & =35 \quad \\
\Rightarrow & \frac{7 x}{5} & =35 \quad & \Rightarrow \quad x=\frac{2 x+5 x}{5}=35 \\
\Rightarrow & x & =\mathbf{2 5} & \\
7 & & &
\end{aligned}
$$

16. Let the distance covered by Sarita $=x \mathrm{~km}$

The distance covered by Julie $=(18-x) \mathrm{km}$

$$
\begin{array}{rlrl}
& & \text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
& & \frac{5}{2} & =\frac{18-x}{t} \\
\Rightarrow & t & =\frac{36-2 x}{5} \\
\text { And } & 2 & =\frac{x}{t} \Rightarrow t=\frac{x}{2} .
\end{array}
$$

According to the condition

$$
\begin{aligned}
\frac{36-2 x}{5} & =\frac{x}{2} \\
72-4 x & =5 x \\
72 & =9 x \\
x & =8 \\
t & =\frac{8}{2}=\mathbf{4} \text { hours. }
\end{aligned}
$$

17. Let the number be x.

$$
\begin{aligned}
\left(x-\frac{1}{2}\right) \times 4 & =5 \\
x-\frac{1}{2} & =\frac{5}{4} \quad \Rightarrow \quad x=\frac{5}{4}+\frac{1}{2} \\
x & =\frac{5+2}{4}=\frac{7}{4}
\end{aligned}
$$

18. Do yourself.

Apply Your Mind!

1. (c)
2. (a)
3. (b)
4. (b)
5. (c)
6. (c)
\square

9. Direct and Inverse Variations

Learning Target 9.1

1. (ii)

x	7	9	13	21	25
y	21	27	39	63	75

(i), (iii) Do yourself.
2.

Time (in minutes)	3	4	7	25	155
Height of the ballon (in metres)	36	48	84	300	1860

3. Sale

Commission
1000
100 73
x

It is a direct variation

$$
\begin{aligned}
\frac{1000}{100} & =\frac{73}{x} \\
x & =\frac{73}{10}=₹ 7.30 .
\end{aligned}
$$

4. Children

It is a direct variation

$$
\begin{aligned}
& \frac{x}{8}=\frac{40}{5} \quad \Rightarrow \quad x=\frac{40 \times 8}{5} \\
\Rightarrow \quad & x=8 \times 8=\mathbf{6 4} \text { bottles. }
\end{aligned}
$$

5. Cost (₹)

Stamps
18
36 15
x
It is a direct variation

$$
\frac{x}{15}=\frac{36}{18} \quad \Rightarrow \quad x=30 \text { stamps. }
$$

6. Hours

5
20

Tools
120
x

It is a direct variation

$$
\begin{aligned}
\frac{x}{120} & =\frac{20}{5} \\
x & =\frac{120 \times 20}{5}=24 \times 20=480 \\
x & =\mathbf{4 8 0} \text { tools. }
\end{aligned}
$$

7. Time

Words
30
540
x
It is a direct variation

$$
\begin{aligned}
\frac{x}{540} & =\frac{6}{30} \\
\Rightarrow \quad x & =\mathbf{1 0 8} \text { words. }
\end{aligned}
$$

8. Steps

Distance
$\left.\begin{gathered}125 \\ 315\end{gathered} \right\rvert\, \begin{gathered}100 \\ x\end{gathered}$
It is a direct variation

$$
\begin{aligned}
\frac{x}{100} & =\frac{315}{125} \quad \Rightarrow \quad x=\frac{315 \times 100}{125} \\
\Rightarrow \quad x & =\mathbf{2 5 2}
\end{aligned}
$$

9. Do yourself.
10. Plastic

Cost
93
105
1395
x
It is a direct variation

$$
\begin{aligned}
\frac{x}{1395} & =\frac{105}{93} \Rightarrow x=\frac{105 \times 1395}{93} \\
x & =₹ 1575 .
\end{aligned}
$$

Learning Target 9.2

1. (i) Inverse variation
(ii) Direct variation
2. (i) Possible
(ii) Possible
(iii) Not possible
(iv) Possible
3. Pumps

Hours

$20 \uparrow$
45
12
x

It is inverse variation

$$
\begin{aligned}
\frac{x}{12} & =\frac{20}{45} \quad \Rightarrow \quad x=\frac{20 \times 12}{45}=\frac{4 \times 12}{9} \\
x & =\frac{16}{3} \\
\Rightarrow \quad x & =\mathbf{5} \frac{\mathbf{1}}{\mathbf{3}} \text { hours. }
\end{aligned}
$$

4. (i), (ii), (iii) are possible (iv) Not possible
5. Days

40
24
It is a inverse variation

$$
\begin{aligned}
\frac{x}{1800} & =\frac{40}{24} \Rightarrow x=\frac{1800 \times 40}{24} \\
\boldsymbol{x} & =\mathbf{3 0 0 0} \text { persons. }
\end{aligned}
$$

6. Do yourself.
7. Months

> Persons 560 x

It is a inverse variation

$$
\begin{aligned}
\frac{x}{560} & =\frac{9}{7} \\
\Rightarrow \quad x & =\mathbf{7 2 0} \text { persons. }
\end{aligned}
$$

Required persons $=720-560=\mathbf{1 6 0}$ persons.
8. Time
$20 \uparrow$ 15

Speed 12
x
It is a inverse variation

$$
\begin{aligned}
& \frac{x}{12}=\frac{20}{15} \\
& \Rightarrow \quad x=16 \mathrm{~km} / \mathrm{h} \text {. }
\end{aligned}
$$

9. Cost

Bats
58

78 \quad| 39 |
| ---: |
| |

It is a inverse variation

$$
\begin{aligned}
\frac{x}{39} & =\frac{58}{78} \quad \Rightarrow \quad 78 \times x=58 \times 39 \\
x & =\frac{58 \times 39}{78}=29 \\
x & =29 \text { bats. }
\end{aligned}
$$

10. Do yourself.

Apply Your Mind!

1. (d)
2. (c)
3. (c)
4. (b)

10. Time and Work, Time and Distance

Learning Target 10.1

1. Distance $=$ Speed \times Time

$$
\begin{aligned}
& =\frac{48(8 \times 60 \times 48)}{60}=\frac{4 \times 528}{5}=\frac{2112}{5} \\
& =422.4 \mathrm{~km} .
\end{aligned}
$$

2. Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{18 \times 2}{9}=\mathbf{4} \mathbf{k m} / \mathbf{h r}$.
3. Time

Distance
60
12 50
x
It is a direct variation

$$
\begin{aligned}
\frac{x}{50} & =\frac{12}{60} \Rightarrow 60 \times x=12 \times 50 \\
x & =\frac{12 \times 50}{60}=\frac{12 \times 5}{6}=10 \\
\text { Distance } & =\mathbf{1 0} \mathbf{~ k m} . \\
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
6 & =\frac{19.5}{t} \Rightarrow 6 t=19.5 \\
t & =\frac{195}{6 \times 10} \quad \Rightarrow \quad t=\mathbf{3} \frac{\mathbf{1}}{\mathbf{4}} \text { hours. }
\end{aligned}
$$

4.
5. X 's one hour work $=\frac{1}{10}$
$Y ' s$ one hour work $=\frac{1}{15}$
X and Y 's one hour work $=\frac{1}{10}+\frac{1}{15}=\frac{3+2}{30}=\frac{5}{30}=\frac{1}{6}$
So, X and Y together fill the tank in $\mathbf{6}$ hrs.
6. A 's one day's work $=\frac{1}{8}$

B's one day's work $=\frac{1}{12}$
C 's one day's work $=\frac{1}{15}$
$\therefore(A+B+C)$'s one day's work $=\frac{1}{8}+\frac{1}{12}+\frac{1}{15}$

$$
=\frac{15+10+8}{120}=\frac{33}{120}=\frac{11}{40}
$$

The complete work finished in $\mathbf{3} \frac{7}{11}$ days.
7. Ram and Arjun's one day's work $=\frac{1}{12}$

$$
\begin{aligned}
\text { Arjun's one day's work } & =\frac{1}{30} \\
\text { Ram's one day's work } & =\frac{1}{12}-\frac{1}{30} \\
& =\frac{5-2}{60}=\frac{3}{60}=\frac{1}{20}
\end{aligned}
$$

Ram alone finish the work in $\mathbf{2 0}$ days.
8. X 's one hour work $=\frac{1}{12}$
$Y ' s$ one hour work $=\frac{1}{15}$
Both X and Y 's one hour work $=\frac{1}{12}+\frac{1}{15}=\frac{5+4}{60}=\frac{9}{60}=\frac{3}{20}$
Hence, X and Y together can finish the work in 6 hours 40 minutes.
9. to 11. Do yourself.
12. Persons
50

75 $|$| 18 |
| ---: |
| x |

$$
\begin{aligned}
\frac{x}{18} & =\frac{50}{75} \\
\Rightarrow \quad x & =\frac{50 \times 18}{75}=2 \times 6=\mathbf{1 2} \text { days. }
\end{aligned}
$$

13. Do yourself.
14. When a train crosses a tree, entire length of the train passes the tree, i.e., a distance of 270 m is covered.

$$
\begin{aligned}
\text { Speed } & =\frac{40.5 \times 5}{18} \mathrm{~m} / \mathrm{s}=\frac{45}{4} \mathrm{~m} / \mathrm{s} \\
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
\frac{45}{4} & =\frac{270}{t} \Rightarrow t=\frac{270 \times 4}{45} \\
t & =\mathbf{2 4} \text { seconds. }
\end{aligned}
$$

15. to 16. Do yourself.
16. Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
\begin{aligned}
80 & =\frac{x}{4.5} \Rightarrow 80=\frac{10 \times x}{45} \\
x & =\frac{45 \times 80}{10}=45 \times 8 \\
\Rightarrow \quad x & =360 \mathrm{~km} . \\
\text { Again } \quad \text { Speed } & =\frac{\text { Distance }}{\text { Time }}=\frac{360}{3}=\mathbf{1 2 0} \mathbf{~ k m} / \mathbf{h r} .
\end{aligned}
$$

18. Speed $=\frac{55 \times 5}{18}=\frac{275}{18}$

To cross the platform, the train will have to cover $(250+520) \mathrm{m}$

$$
=770 \mathrm{~m}
$$

$$
\text { Time }=\frac{\text { Distance }}{\text { Speed }}=\frac{770 \times 18}{275}=\mathbf{5 0 . 4} \text { seconds. }
$$

Apply Your Mind!

1. (c)
2. (d)
3. (a)
4. (d)

11. Application of Percentage

Learning Target 11.1

1. (i) $\frac{b \times \frac{1}{2}}{100}=50 \Rightarrow b=2 \times 50 \times 100=₹ \mathbf{1 0 0 0 0}$
(ii) Do yourself.
(iii) $\frac{3.4 \times b}{100}=68 \Rightarrow b=\frac{68 \times 100}{3.4}=₹ \mathbf{2 0 0 0}$
2. Let the school opended for x day, then

$$
\begin{aligned}
\frac{x \times 90}{100} & =216 \\
90 \times x & =216 \times 100 \\
x & =\frac{216 \times 100}{90}=240 \\
x & =\mathbf{2 4 0} \text { days. }
\end{aligned}
$$

3. Let the monthly income be x, then

$$
\begin{array}{rlrl}
x \times \frac{15}{100} & =600 & \Rightarrow & 15 \times x=600 \times 100 \\
x & =\frac{600 \times 100}{15} \quad \Rightarrow & x=\mathbf{4 0 0 0} \\
x & =₹ 4000 . & &
\end{array}
$$

4. Do yourself.
5. The population of the town in 2020 be x.

$$
\begin{aligned}
\frac{5 \times x}{100} & =8820 \quad \Rightarrow \quad x=\frac{8820 \times 100}{5} \\
x & =176400
\end{aligned}
$$

6. Let Kishan's monthly salary be x.

$$
\begin{aligned}
\text { Spend on food } & =30 \% \\
\text { Donates } & =3 \%
\end{aligned}
$$

Then total spent in percentage $=(30+3)=33 \%$

$$
\begin{aligned}
x \times \frac{33}{100} & =2310 \\
x \times 33 & =2310 \times 100 \\
x & =\frac{2310 \times 100}{33} \\
x & =₹ 70 \times 100=₹ \mathbf{7 0 0 0}
\end{aligned}
$$

7. Let the school strength be x.

$$
\begin{array}{r}
x \times \frac{8}{100}=160 \\
x=\mathbf{2 0 0 0}
\end{array}
$$

The new strength $=2000+160=\mathbf{2 1 6 0}$.
8. Let the total number of matches played by the team during the year be x.
Then $\frac{x \times 60}{100}=12$

$$
x=\frac{12 \times 100}{60}=\frac{100}{5}=\mathbf{2 0}
$$

9. Do yourself.
10. Let Manjul's income be x.

Monika's income $=\frac{x \times 60}{100}=\frac{3 x}{5}$

$$
x+\frac{3 x}{5}=\frac{8 x}{5}
$$

\because If Monika's income is $\frac{8 x}{5}$ then Manjul's income $=\frac{3 x}{5}$
\therefore Monika's income is one then Manjul's income $=\frac{3 x \times 5}{5 \times 8 x}$
\therefore Monika's income is 100 then Manjul's income $=\frac{100 \times 3 x \times 5}{5 \times 8 x}$

$$
=\frac{100 \times 3}{8}=\frac{300}{8}=\frac{75}{2}=\mathbf{3 7 . 5 \%} .
$$

11. Do yourself.
12. If total number of students is 100 , number of girls are $=60$.

Number of boys $=40$.
If number of girls $=60$, then total number of students $=100$.
If number of girls $=1$, then total number of students $=\frac{100}{60}$.
If number of girls $=690$, then total number of students

$$
=\frac{100}{60} \times 690=1150 .
$$

Total number of students $=\mathbf{1 1 5 0}$
Number of boys $=40 \%$ of total number of students

$$
=\frac{40}{100} \times 1150
$$

Number of boys $=460$.

Learning Target 11.2

1.

Purchased		Overhead expenses	Cost price	Selling price	Profit	Loss	Profit $\%$	Loss $\%$
(i)	$₹ 240$	$₹ 10$	$₹ 250$	$₹ 235$	-	$₹ 15$	-	6
(ii)	$₹ 370$	$₹ 80$	$₹ 450$	$₹ 540$	$₹ 90$	-	$₹ 20$	-
(iii)	$₹ 3000$	$₹ 100$	$₹ 3100$	$₹ 3038$	-	$₹ 62$	-	2
(iv)	$₹ 28000$	$₹ 2000$	$₹ 30000$	$₹ 36000$	$₹ 6000$	-	20	-
(v)	$₹ 400$	$₹ 500$	$₹ 900$	$₹ 972$	$₹ 72$	-	8	-

2. Cost price includes the over head charges also.

Therefore,

$$
\begin{aligned}
& C P=₹(70000+5000)=75000 \\
& S P=67500
\end{aligned}
$$

$\mathrm{SP}<\mathrm{CP}$

$$
\begin{aligned}
\text { Loss } & =\mathrm{CP}-\mathrm{SP} \\
& =75000-67500=₹ 7500 \\
\text { Loss } \% & =\frac{\operatorname{Loss} \times 100}{\mathrm{CP}}=\frac{7500 \times 100}{75000} \\
& =\frac{100}{10}=\mathbf{1 0 \%}
\end{aligned}
$$

3. Cost price includes the over head charges also.

Therefore,

$$
\begin{aligned}
\mathrm{CP} & =₹(15+5)=₹ 20 \\
\mathrm{SP} & =₹ 24 \\
\mathrm{SP} & >\mathrm{CP} \\
\text { Profit } & =\mathrm{SP}-\mathrm{CP}=24-20=4
\end{aligned}
$$

$$
\text { Profit } \%=\frac{\text { Profit } \times 100}{C P}=\frac{4 \times 100}{20}=\frac{100}{5}=\mathbf{2 0 \%}
$$

4. Cost price includes the overhead charges also.

Therefore, $₹(150 \times 20+200)=₹(3000+200)=₹ 3200$

$$
\begin{aligned}
\mathrm{SP} & =(150 \times 12 \times 2.40)=₹ 4320 \\
\mathrm{SP} & >\mathrm{CP} \\
\text { Profit } & =₹(4320-3200)=₹ 1120 \\
\text { Profit } \% & =\frac{1120 \times 100}{3200}=\mathbf{3 5 \%}
\end{aligned}
$$

5. Let the CP be ₹ x.

Then

$$
\mathrm{SP}=₹ 990
$$

$$
\begin{aligned}
\text { Profit } & =\frac{x \times 10}{100}=\frac{x}{10} \\
\mathrm{SP} & =x+\frac{x}{10}=\frac{11 x}{10}
\end{aligned}
$$

$$
\frac{11 x}{10}=990
$$

$$
\Rightarrow \quad x=\frac{990 \times 10}{11} \Rightarrow x=₹ 900
$$

6. to 7. Do yourself.
7. Let the CP be ₹ x, then

$$
\begin{aligned}
\mathrm{SP} & =₹ 10240 \\
\text { Loss } & =\frac{x \times 20}{100}=₹ \frac{x}{5}
\end{aligned}
$$

$$
\mathrm{SP}=x-\frac{x}{5}=₹ \frac{4 x}{5}
$$

Then

$$
\frac{4 x}{5}=10240
$$

or

$$
x=\frac{10240 \times 5}{4}=₹ \mathbf{1 2 8 0 0}
$$

9. Let the CP be ₹ x, then

$$
\begin{aligned}
\text { SP } & =₹ 240 \\
\text { Loss } & =\frac{x \times 20}{100}=\frac{x}{5} \\
\mathrm{SP} & =x-\frac{x}{5}=\frac{4 x}{5} \\
\frac{4 x}{5} & =240 \quad \Rightarrow \quad x=₹ 300 \\
\mathrm{CP} & =₹ 300 \text { and S.P. }=₹ 360 \\
\text { Profit } & =\mathrm{SP}-\mathrm{CP} \\
& =₹(360-300)=₹ 60 \\
\text { Profit } \% & =\frac{\text { Profit } \times 100}{\mathrm{CP}}=₹ \frac{60 \times 100}{300}=\mathbf{2 0 \%} .
\end{aligned}
$$

10. $\mathrm{SP}=₹ 135$.

If new SP = ₹ 165

$$
\begin{aligned}
\text { Gain } \% & =? \\
\text { Loss } \% & =\frac{\mathrm{CP}-\mathrm{SP}}{\mathrm{CP}} \times 100 \\
\frac{10}{100} & =\left(1-\frac{₹ 135}{\mathrm{C} . \mathrm{P}}\right) \\
\frac{₹ 135}{\mathrm{CP}} & =1-\frac{1}{10}=\frac{9}{10} \\
\mathrm{CP} & =₹ \frac{135 \times 10}{9}=15 \times 10=₹ 150 \\
\mathrm{SP} & =₹ 165 \\
\text { Profit } & =\mathrm{SP}-\mathrm{CP}=₹ 165-150=₹ 15 \\
\text { Profit } \% & =\frac{\text { Profit }}{\mathrm{CP}} \times 100=\frac{₹ 15 \times 100}{₹ 150}=\mathbf{1 0 \%} .
\end{aligned}
$$

11. $\mathrm{SP}=₹ 198$, gain $=10 \%$

Then

$$
\begin{aligned}
\mathrm{CP} & =\frac{100}{100+\text { Profit } \%} \times \mathrm{SP} \\
& =₹ \frac{100 \times 198}{110}=₹ 180
\end{aligned}
$$

Second calculator, $\quad S P=₹ 198$, Loss $=10 \%$

$$
\begin{aligned}
\mathrm{CP} & =\frac{100}{100-\text { Loss } \%} \times \mathrm{SP} \\
& =\frac{100}{100-10} \times ₹ 198=₹ \frac{100 \times 198}{90} \\
& =₹ 10 \times 22=₹ 220 \\
\text { Total SP } & =₹ 198 \times 2=₹ 396 \\
\mathrm{CP} & =₹(180+220)=₹ 400 \\
\mathrm{CP} & >\mathrm{SP} \\
\text { Loss } & =₹(400-396)=₹ 4 \\
\text { Loss } \% & =\frac{\text { Loss } \times 100}{\mathrm{CP}}=\frac{4 \times 100}{400}=\frac{100}{100}=1 \\
\text { Loss } & =\mathbf{1 \%} .
\end{aligned}
$$

12. $\mathrm{CP}=₹ 960$, profit $=5 \%$

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{100+5}{100} \times 960=\frac{105 \times 960}{100} \\
& =₹ \frac{100800}{100}=₹ 1008
\end{aligned}
$$

Again Subramaniam sold it to Mukul at a profit of 10\%

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{100+10}{100} \times 1008=\frac{110 \times 1008}{100} \\
& =₹ \frac{110880}{100}=₹ \mathbf{1 1 0 8 . 8 0} .
\end{aligned}
$$

13. $\mathrm{SP}=150$, Loss $\%=4 \%$

$$
\begin{aligned}
\mathrm{CP} & =\frac{100}{100-\text { Loss } \%} \times \mathrm{SP} \\
& =\frac{100}{100-4} \times 150=₹ \frac{100}{96} \times 150 \\
& =₹ 156.25
\end{aligned}
$$

Again

$$
\begin{aligned}
\mathrm{SP} & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
\mathrm{SP} & =\frac{100+20}{100} \times 156.25 \\
& =\frac{120 \times 156.25}{100}=₹ \mathbf{1 8 7 . 5 0}
\end{aligned}
$$

14. $C P=200$, Profit $=30 \%$

$$
\begin{aligned}
\text { SP } & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{100+30}{100} \times \mathrm{CP}=\frac{130 \times 200}{100}=₹ 260
\end{aligned}
$$

Cost price of 20 oranges

$$
\begin{aligned}
& =₹ 20 \times 2=₹ 40 \\
\mathrm{CP} & =40, \text { Profit }=5 \% \\
\mathrm{SP} & =\frac{100+\text { Profit } \%}{100} \times \mathrm{CP} \\
& =\frac{(100+5)}{100} \times ₹ 40 \\
& =₹ \frac{105 \times 40}{100}=₹ 10.5 \times 4=₹ 42
\end{aligned}
$$

Cost of remaining oranges

$$
\begin{aligned}
\mathrm{CP} & =80 \times 2=160 \\
\mathrm{SP} & =(260-42)=₹ 218 \\
\mathrm{SP} & >\mathrm{CP} \\
\text { Profit } & =₹(218-160)=₹ 58 \\
\text { Profit } \% & =\frac{\text { Profit } \times 100}{\mathrm{CP}}=\frac{58 \times 100}{160}=\mathbf{3 6 . 2 5 \%} .
\end{aligned}
$$

Learning Target 11.3

1. (i) $P=₹ 500, R=12 \%, T=2$ years

$$
\begin{aligned}
\text { SI } & =\frac{P \times R \times T}{100} \\
& =\frac{500 \times 12 \times 3}{100}=₹ \mathbf{1 8 0} .
\end{aligned}
$$

(ii), (iii) Do yourself.
(iv) $P=$ ₹ 560 , Time $=\frac{73}{365}$ years, $\mathrm{SI}=₹ 14$

$$
R=\frac{\mathrm{SI} \times 100}{\mathrm{P} \times \mathrm{T}}=\frac{14 \times 100 \times 365}{560 \times 73}=\mathbf{1 2 . 5 \%}
$$

(v) Do yourself.
(vi) $P=₹ 720, R=4 \%, \mathrm{SI}=₹ 72$

$$
\begin{aligned}
\text { Time } & =\frac{\mathrm{SI} \times 100}{\mathrm{R} \times \mathrm{P}}=\frac{72 \times 10}{4 \times 720} \\
& =\frac{100}{40}=2 \frac{1}{2} \text { years } \\
\text { Amount } & =P+\text { SI }=₹ 720+₹ 72=₹ 792 .
\end{aligned}
$$

2. (i), (ii) Do yourself.
(iiii) $P=₹ 600, R=2 \%, T=\frac{20}{12}=\frac{5}{3}$ years

$$
\mathrm{SI}=\frac{P \times R \times T}{100}=\frac{600 \times 2 \times 5}{3 \times 100}=₹ 20
$$

$$
\begin{aligned}
\text { Amount } & =P+\text { SI } \\
& =₹(600+20)=₹ \mathbf{6 2 0} .
\end{aligned}
$$

3. (i), (ii) Do yourself.
(iii) $\mathrm{SI}=₹ 12600$,

$$
\begin{aligned}
R & =18 \% \text { per annum } \\
P & =10000 \\
T & =\frac{S I}{P \times 100}=\frac{12600 \times 100}{10000 \times 18} \\
& =7 \text { Years. }
\end{aligned}
$$

4. (i) $\mathrm{SI}=₹ 36, R=3 \%$ and $T=3$ years

$$
P=\frac{S I \times 100}{R \times T}=\frac{36 \times 100}{3 \times 3}=₹ \mathbf{3 4 0 0} .
$$

(ii), (iii) Do yourself.
5. (i) $P=₹ 500, \mathrm{SI}=₹ 150, T=4$ years

$$
\begin{aligned}
R & =\frac{S I \times 100}{P \times T}=\frac{150 \times 100}{500 \times 4} \\
& =\frac{30}{4}=7.5 \%
\end{aligned}
$$

(ii) Do yourself.
(iii) $P=700, \mathrm{SI}=₹ 168, T=\frac{16}{12}$ years

$$
\begin{aligned}
R & =\frac{S I \times 100}{P \times T} \\
& =\frac{168 \times 100 \times 12}{700 \times 16}=\mathbf{1 8 \%} .
\end{aligned}
$$

6. $P=₹ 7200, R=15 \%, T=4 \frac{1}{2}$ years $=\frac{9}{2}$ years

$$
\begin{aligned}
\text { SI } & =\frac{P \times R \times T}{100} \\
& =\frac{7200 \times 15 \times 9}{2 \times 100}=36 \times 15 \times 9 \\
& =4860 \\
A & =\text { SI }+P \\
& =4860+7200=₹ \mathbf{1 2 0 6 0} .
\end{aligned}
$$

7. to 9. Do yourself.
8. Let P be $x, R=10 \%, T=4$ years, $A=₹ 2520$

$$
\begin{aligned}
A & =\text { S.I. }+P \\
2520-x & =\text { S.I. } \\
& =\frac{\text { S.I. } \times 100}{R \times T} \\
x & =\frac{(2520-x) \times 100}{10 \times 4} \\
4 x & =25200-10 x \\
14 x & =25200 \Rightarrow x=\frac{25200}{14} \\
x & =₹ \mathbf{1 8 0 0} .
\end{aligned}
$$

11. Do yourself.
12. Let P be $x, R=9 \%, \mathrm{SI}=594, T=3$ years

$$
\begin{aligned}
P & =\frac{\text { SI } \times 100}{R \times T}=\frac{594 \times 100}{9 \times 3} \\
& =22 \times 100=₹ \mathbf{2 2 0 0} .
\end{aligned}
$$

Learning Target 11.4

1. $P=₹ 1500, A=₹ 2655, \mathrm{SI}=A-P=₹ 1155, T=\frac{7}{2}$ years

$$
\begin{aligned}
R & =\frac{S I \times 100}{P \times T} \\
& =\frac{1155 \times 100 \times 2}{1500 \times 7}=\frac{2310}{105}=\mathbf{2 2 \%} .
\end{aligned}
$$

2. Let P be x and amount $=\frac{7 x}{4}$

$$
\begin{aligned}
\text { SI } & =\text { Amount }- \text { Principal } \\
& =\frac{7 x}{4}-x=\frac{3 x}{4} \\
P & =x, \text { SI }=\frac{3 x}{4}, T=6 \text { years } \\
R & =\frac{\text { SI } \times 100}{P \times T}=\frac{3 x \times 100}{4 \times x \times 6}=\mathbf{1 2 . 5 \%} .
\end{aligned}
$$

3. Do yourself.
4. Let $P=x, A=2 x, \mathrm{SI}=2 x-x=x, R=\frac{25}{2} \%, T=$?

$$
\begin{aligned}
T & =\frac{S I \times 100}{P \times R} \\
& =\frac{x \times 100 \times 2}{x \times 25}=\mathbf{8} \text { years. }
\end{aligned}
$$

5. to 6. Do yourself.
6. $P=₹ 4500, T=1$ years, $A=₹ 5265$

$$
\begin{aligned}
\text { SI } & =₹(5265-4500)=₹ 765 \\
R & =? \\
R & =\frac{\text { SI } \times 100}{P \times T} \\
& =\frac{765 \times 100}{4500 \times 1}=\frac{765}{45}=17 \%
\end{aligned}
$$

For Sanjiv

$$
\begin{aligned}
P & =₹ 4500, T=3, R=17 \%, \mathrm{SI}=? \\
\text { SI } & =\frac{P \times R \times T}{100}=\frac{4500 \times 17 \times 3}{100} \\
& =₹ 2295 \\
\text { Amount } & =\text { Principal }+ \text { SI } \\
& =₹ 4500+₹ 2295=₹ \mathbf{6 7 9 5} .
\end{aligned}
$$

8. Do yourself.

Apply Your Mind!

1. (a)
2. (d)
3. (d)
4. (c)
5. (b)
6. (d)
7. (c)

12.

Lines and Angles

Learning Target $\mathbf{1 2 . 1}$

1. (i) In the given figure,

We know that

$$
\begin{aligned}
(x+25)^{\circ}+(3 x+15)^{\circ} & =180^{\circ} \quad(\because \text { straight angle }) \\
4 x+40 & =180 \\
x & =\frac{140}{4}=\mathbf{3 5}^{\circ}
\end{aligned}
$$

Thus, value of x is 35°.
(ii) $\angle A O B=$?

From the (i) part we know that $x=35^{\circ}$.
Then, value of
$\angle A O B=(x+25)^{\circ}$

$$
=(35+25)^{\circ}=\mathbf{6 0}^{\circ} .
$$

Thus,
$\angle A O B=60^{\circ}$
(iii)

$$
\angle B O C=?
$$

From the (i) part we know that $x=35^{\circ}$

$$
\begin{aligned}
\angle B O C & =3 x+15 \\
& =3 \times 35+15=120^{\circ}
\end{aligned}
$$

Alternate

From (ii) we know $\angle O=60^{\circ}$
And we also know

$$
\begin{aligned}
\angle A O B+\angle B O C & =180^{\circ} \\
\angle B O C & =180^{\circ}-\angle A O B \\
& =180^{\circ}-60^{\circ}=\mathbf{1 2 0}^{\circ} . \\
\angle B O C & =120^{\circ} .
\end{aligned}
$$

2. In the given figure
we know that

$$
\begin{array}{rrr}
\Rightarrow & \angle P Q S+\angle P Q R=180^{\circ} \\
\Rightarrow & (x+70)^{\circ}+(20-x)^{\circ}+\angle P Q R=180^{\circ} \\
\Rightarrow & 90^{\circ}+\angle P Q R=180^{\circ} \\
\Rightarrow & \angle P Q R=180^{\circ}-90^{\circ} \\
\Rightarrow & \angle P Q R=\mathbf{9 0}^{\circ} .
\end{array}
$$

Thus, $\angle P Q R$ is 90°.
3. (i) supplementary
(ii) complementary
(iii) supplementary
(iv) supplementary
(v) complementary
(vi) complementary
4. Do yourself.
5. Do yourself.
6. If angles $(x+4)^{\circ}$ and $(2 x-7)^{\circ}$ are complementary angles.

Then,

$$
\begin{aligned}
(x+4)^{\circ}+(2 x-7)^{\circ} & =90^{\circ} \\
3 x-3 & =90 \\
3 x & =93^{\circ} \\
x & =\mathbf{3 1}^{\circ}
\end{aligned}
$$

7. Let the required angles be $2 x$ and $7 x$.

Then,

$$
\begin{aligned}
2 x+7 x & =180^{\circ} \\
9 x & =180^{\circ} \Rightarrow x=\frac{180^{\circ}}{9}=20^{\circ}
\end{aligned}
$$

So, required angle $2 x=2 \times 20=40^{\circ}$
and

$$
7 x=7 \times 20=\mathbf{1 4 0}^{\circ}
$$

Thus, 40° and 140° are the required angles.
8. (i) Let the two equal angles be x and x.

Then, according to question

$$
\Rightarrow \quad x+x=90^{\circ} \Rightarrow 2 x=90^{\circ} \Rightarrow x=45^{\circ}
$$

Thus, 45° is the required angle.
(ii) Let the equal angles be x.

Thus, 90° is the required angle.
Thus, measure of $\angle E F C$ is 80°.
9. (i)

$$
\begin{array}{rlr}
y & =\mathbf{1 3 5}^{\circ} & \text { (vertically opposite angles) } \\
y+x & =180^{\circ} & \text { (linear pair) } \\
\Rightarrow x=180^{\circ}-135^{\circ} & =\mathbf{4 5}^{\circ} & \\
z & =x & \text { (vertically opposite) } \\
\Rightarrow \quad z & =\mathbf{4 5}^{\circ} . &
\end{array}
$$

Thus, values of x, y and z are $45^{\circ}, 135^{\circ}$ and 45° respectively.
(ii)

$$
31^{\circ}+y=90^{\circ}
$$

(linear pair)

$$
\begin{aligned}
\Rightarrow & y=90^{\circ}-31^{\circ} & =59^{\circ} \\
\Rightarrow & z & =y \\
\Rightarrow & z & =\mathbf{5 9}^{\circ}
\end{aligned}
$$

$$
z=y \quad \text { (vertically opposite) }
$$

$$
x=\mathbf{3 1}^{\circ} \quad \text { (vertically opposite) }
$$

Thus, values of x, y and z are $31^{\circ}, 59^{\circ}$ and 59° respectively.
(iii) Proceed as (i) and (ii).
10. (i) $\quad 139^{\circ}+39^{\circ}=178^{\circ}$.

So, pair of angles are not supplementary.
(ii) Do yourself.
(iii) $\frac{3}{10} \times 90^{\circ}+\frac{4}{15} \times 180^{\circ}$

$$
27^{\circ}+48^{\circ}=75^{\circ}
$$

So, pair of angles are not supplementary..
(iv) $2 x^{\circ}+65^{\circ}+115^{\circ}-2 x^{\circ}=180^{\circ}$

So, pair of angles are supplementary.
11. Let angles be $2 x, 3 x$ and $7 x$.

According to question,

$$
\begin{aligned}
2 x+3 x+7 x & =180^{\circ} \\
12 x & =180^{\circ} \\
x & =15
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then, } \quad x+x=180^{\circ} \\
& \Rightarrow \quad 2 x=180^{\circ} \\
& x=90^{\circ}
\end{aligned}
$$

Then, angles are

$$
\begin{aligned}
& 2 x=2 \times 15=\mathbf{3 0}^{\circ} \\
& 3 x=3 \times 15=\mathbf{4 5}^{\circ} \\
& 7 x=7 \times 15=\mathbf{1 0 5}^{\circ} .
\end{aligned}
$$

Thus, required angles are $30^{\circ}, 45^{\circ}$ and 105°.
12. Given that $\left(3 x+18^{\circ}\right)$ and $\left(2 x+25^{\circ}\right)$ are supplementary.

Then,

$$
\begin{aligned}
3 x+18^{\circ}+2 x+25^{\circ} & =180^{\circ}, 5 x+43^{\circ}=180^{\circ} \\
5 x & =137^{\circ}, x=\mathbf{2 7 . 4 ^ { \circ }} \text { or } \mathbf{2 7 ^ { \circ }} \mathbf{2 4}^{\prime} .
\end{aligned}
$$

Thus, value of x is 27.4°.
13. Given that

$$
\begin{aligned}
10 \% \text { of } x+40 \% \text { of } 2 x & =90^{\circ} \\
\frac{x \times 10}{100}+\frac{2 x \times 40}{100} & =90^{\circ} \\
\frac{x}{10}+\frac{4 x}{5} & =90^{\circ} \\
9 x & =900^{\circ} \\
x & =\mathbf{1 0 0}^{\circ} .
\end{aligned}
$$

Thus, value of x is 100°.
14. Let the angles be x and $5 x$.

Then,

$$
\begin{aligned}
x+5 x & =90^{\circ} \\
6 x & =90^{\circ} \\
x & =\mathbf{1 5}^{\circ} .
\end{aligned}
$$

So, angles are $x=15^{\circ}$ and $5 x=5 \times 15^{\circ}=75^{\circ}$.
15. Do yourself.
16. Proceed as Q. No. 13 .
17. In the given figure

$$
\begin{aligned}
x+2 x+3 x+4 x & =180^{\circ} \\
10 x & =180^{\circ} \\
x & =\mathbf{1 8}^{\circ} .
\end{aligned}
$$

Now its supplement $=180^{\circ}-18^{\circ}$

$$
=162^{\circ} .
$$

Thus, value of angle x is 18° and its supplement is 162°.

Learning Target 12.2

1. (i) $\angle 3$ and $\angle 6$ are interior alternate angles.
(ii) $\angle 2$ and $\angle 4$ are adjacent angles.
(iii) $\angle 3$ and $\angle 7$ are corresponding angles.
(iv) $\angle 2$ and $\angle 7$ are exterior alternate angles.
(v) $\angle 4$ and $\angle 6$ are allied or co-interior angles.
(vi) $\angle 1$ and $\angle 8$ are exterior alternate angles.
(vii) $\angle 1$ and $\angle 5$ are corresponding angles.

(viii) $\angle 1$ and $\angle 4$ are vertically opposite angles.
(ix) $\angle 5$ and $\angle 7$ are adjacent angles.
2. Do yourself.
3.

$$
a=d \quad \text { (vertically opposite angles) }
$$

$$
\begin{array}{rlrl}
d & =f & & \begin{aligned}
& \text { (corresponding angles) } \\
& f=110^{\circ} \\
& a=d=f=110^{\circ} \\
& \text { (vertically opposite angles) }
\end{aligned} \\
\therefore & & & \\
\therefore+110^{\circ} & =180^{\circ} & \text { (co-interior angles) } \\
e & =180^{\circ}-110^{\circ}=70^{\circ} \quad \\
b & =c & \text { (vertically opposite angles) } \\
b & & \text { (corresponding angles) } \\
e & =g & \text { (vertically opposite angles) } \\
\text { Hence, } & b & =c=e=g=70^{\circ} . \\
& a & =\mathbf{1 1 0}^{\circ}, b=\mathbf{7 0}^{\circ}, c=\mathbf{7 0}^{\circ}, d=\mathbf{1 1 0}^{\circ}, e=\mathbf{7 0}^{\circ}, \\
& f & =\mathbf{1 1 0}^{\circ} \text { and } g=\mathbf{7 0}^{\circ}
\end{array}
$$

4. Proceed as Q. No. 3.
5. (i) Given angles are $(2 x+6)^{\circ}$ and $(3 x+54)^{\circ}$ are co-interior angles.
We know that pair of parallel lines cut by transversal line, pair of co-interior angles are supplementary
$\therefore 2 x+6+3 x+54=180^{\circ}$
$\Rightarrow \quad 5 x=180-60=120^{\circ}$
$\Rightarrow \quad x=\frac{120^{\circ}}{5}=\mathbf{2 4}^{\circ}$.
Thus, value of x is 24°.
(ii) From the figure $\left(2 x+15^{\circ}\right)$ and $\left(3 x+30^{\circ}\right)$ are co-interior angles.
\therefore Co-interior angles are supplementary.

$$
\begin{array}{rlrl}
& 2 x+15+3 x+30 & =180^{\circ} \\
\Rightarrow & & 5 x+45 & =180^{\circ} \\
\Rightarrow & 5 x & =180^{\circ}-45 \\
& & =135^{\circ} \\
\Rightarrow & x & =\frac{135^{\circ}}{5}=27^{\circ}
\end{array}
$$

Thus, value of x is 27°.
6. In the figure (i),

$$
\begin{array}{rlr}
a & =b \quad \text { (corresponding angles) } \\
b & =c \quad \text { (vertically opposite angles) } \\
a & =c \quad \text { (alternate angles) } \\
\therefore \quad a & =\boldsymbol{b}=\boldsymbol{c}
\end{array}
$$

Thus, $\angle a, \angle b$ and $\angle c$ are equal.
In the figure (ii),

$$
\begin{array}{rlr}
x & =y & \text { (vertically opposite angles) } \\
y & =l \quad \text { (alternate angles) } \\
x & =l \quad \text { (corresponding angles) } \\
l & =n \text { (vertically opposite angles) } \\
n & =r \quad \text { (corresponding angles) } \\
\therefore \quad x & =y=l=n=r \\
\text { Again } m & =k \quad \text { (vertically opposite angles) } \\
& k & =q \quad \text { (corresponding angles) } \\
\therefore \quad \boldsymbol{m} & =\boldsymbol{k}=\boldsymbol{q}
\end{array}
$$

Thus, $\angle m, \angle k$ and $\angle q$ are equal.
7. (i) In figure, If lines are parallel, then

$$
\begin{aligned}
120^{\circ}+50^{\circ} & =180^{\circ} \quad \text { (Because of co-interior angles) } \\
\Rightarrow \quad 170^{\circ} & \neq 180^{\circ}
\end{aligned}
$$

But it is not true.

(i)

(ii)

Thus, there are not parallel lines.
(ii) In figure (ii)

Let $\quad \angle 1=45^{\circ} \quad$ (vertically opposite angles
and $\quad \angle 2=135^{\circ} \quad$ (co-interior angles)
Lines will be parallel if

$$
\begin{aligned}
\angle 1+\angle 2 & =180^{\circ} \quad \text { (Because of co-interior angles) } \\
45^{\circ}+135^{\circ} & =180^{\circ} \\
180^{\circ} & =180^{\circ}
\end{aligned}
$$

Which is true.
Thus, there are parallel lines.
(iii) In figure (iii)

Lines will be parallel if corresponding angles are equal then if

$$
120^{\circ}=130^{\circ}
$$

Which is not true.

Thus, there are not parallel lines.

(iv) In figure (iv).

Let $\quad \angle 1=110^{\circ} \quad$ (vertically opposite angles)
and $\quad \angle 2=70^{\circ}$
Lines parallel
then $\quad \angle 1+\angle 2=180^{\circ}$
(Because of co-interior angles)

$$
110^{\circ}+70^{\circ}=180^{\circ}
$$

$$
180^{\circ}=180^{\circ}
$$

Which is true.

(iv)

Thus, lines are parallel.
(v) In figure (v)

$$
\begin{aligned}
\angle 1+100^{\circ} & =180^{\circ} \\
\angle 1 & =180^{\circ}-100^{\circ} \\
\angle 1 & =80^{\circ} \\
& \text { (Linear pair) }
\end{aligned}
$$

l_{1} and l_{2} are parallel if $\angle 1=70^{\circ}$ but $\quad 80^{\circ}=70^{\circ}$

Which is not true.

Thus, l_{1} and l_{2} will be parallel.
Again, l_{3} and l_{5} will be parallel if, $80^{\circ}=70^{\circ}$

(v)
(corresponding angles)

Which is not true.

Thus, l_{3} and l_{5} are not parallel.
But $\quad \angle 1=80^{\circ} \quad$ (Alternate angles)
$\Rightarrow \quad 80^{\circ}=80^{\circ}$

Which is true.

Thus, l_{2} and l_{4} are parallel.
(vi) Lines are parallel

If alternate angles are equal
$\Rightarrow \quad 50^{\circ}=40^{\circ}$

Which is not true.

Thus, lines are not parallel.
8. (i) From the figure

$\begin{aligned} \therefore \quad z+60^{\circ} & =180^{\circ} \\ & (\because \text { co-interior angles are supplementary })\end{aligned}$
$\Rightarrow \quad z=180^{\circ}-60^{\circ}=\mathbf{1 2 0}^{\circ}$

$$
x+y=60^{\circ}
$$

(\because Alternate interior angles are equal)
$y+z=143^{\circ}$
(\because Alternate interior angles are equal)
$\Rightarrow \quad y=143^{\circ}-120^{\circ}=\mathbf{2 3}^{\circ}$.
Now,

$$
x+y=60^{\circ}
$$

$$
x+23^{\circ}=60^{\circ}
$$

$$
x=60^{\circ}-23^{\circ}=\mathbf{3 7}^{\circ}
$$

Thus, measure of angles x, y and z are $37^{\circ}, 23^{\circ}$ and 120° respectively.
(ii) From the figure

In the triangle sum of interior angles

$$
\begin{array}{r}
72^{\circ}+a+b=180^{\circ} \\
72^{\circ}+55^{\circ}+b=180^{\circ} \\
b=180^{\circ}-127^{\circ}=\mathbf{5 3}^{\circ}
\end{array}
$$

$$
\text { Now, } \begin{aligned}
b+c+55^{\circ} & =180^{\circ} \\
53^{\circ}+c+55^{\circ} & =180^{\circ} \\
c+108^{\circ} & =180^{\circ} \\
c & =180^{\circ}-108^{\circ} \\
c & =\mathbf{7 2}^{\circ}
\end{aligned}
$$

(Linear pair)

Thus, measure of angles a, b and c are $55^{\circ}, 53^{\circ}$ and 72° respectively.
(iii) From the figure

$$
\begin{array}{rlrr}
& & 75^{\circ}+a & =180^{\circ} \\
\Rightarrow & & =180^{\circ}-75^{\circ}=\mathbf{1 0 5}^{\circ} \\
& & & =75^{\circ} \\
\therefore & d & \text { (Alternate interior angles) } \\
\therefore & d & =c=75^{\circ} & \text { (Corresponding angles) } \\
& & \text { (Alternate interior angles) }
\end{array}
$$

9. Proceed as Q. No. 7.

Apply Your mind!

1. (b)
2. (c)
3. (d)
4. (a)
5. (c)
6. (a)

13. Centroid, Orthocentre, Incentre and Circumcentre of a Triangle

Learing Target 13.1

1. (ii) Yes
2. Point C
3. (i) Yes
(ii) Outside
4. Yes, $D R=R E, F R$ is a median of the $\triangle D E F$
5. Do it yourself.
6. Do it yourself
7. No
8. Yes
9. Yes
10. (i) line segment, perpendicular
(ii) Orthocentre (iii) Outside (iv) $A C$ and $B C$ (v) $A C$
(vi) Concurrent (vii) Centroid (viii) $A B$ (ix) Interior.

Learning Target 13.2

1. Do it yourself.
2. No
3. Yes
4. Yes,
5. Do it yourself.
6. Do it yourself.
7. (i) Concurrent (ii) Perpendicular bisectors (iii) Concurrent (iv) Angle bisector (v) Angle A

14. Visualizing Solid Shapes

Learning Target 14.1
Do it yourself.
Learning Target 14.2
Do it yourself.

Apply Your Mind!

1. (d)
2. (c)
3. (d)
4. (a)
5. (a)
6. (c)
7. (b)
8. (d)
9. (c)

15.

Quadrilateral

Learning Target 15.1

1. $\triangle A C D, \triangle A C B$, two triangles
2. Four triangles, $\triangle A O B, \triangle B O C, \triangle C O D, \triangle D O A$
3. (i) Four- $P Q$ and $Q R, Q R$ and $R S, R S$ and $S P, S P$ and $P Q$
(ii) Two- $P Q$ and $R S, P S$ and $Q R$
(iii) Four- $\angle P$ and $\angle Q, \angle Q$ and $\angle R, \angle R$ and $\angle S, \angle S$ and $\angle P$
(iv) Two $-\angle P$ and $\angle R, \angle Q$ and $\angle S$
4. (i) Vertices-A, B, C, D
(ii) Angles- $\angle A, \angle B, \angle C, \angle D$
(iii) Diagonals- $A C$ and $B D$
(iv) Adjacent sides- $A B$ and $B C, B C$ and $C D, C D$
and $D A, D A$ and $A B$
(v) Adjacent angles- $\angle A$ and $\angle B, \angle B$ and $\angle C, \angle C$ and $\angle D, \angle D$ and $\angle A$
(vi) Opposite sides- $A B$ and $C D, B C$ and $D A$
(vii) Opposite angles- $\angle A$ and $\angle C, \angle B$ and $\angle D$.
5.

Yes, $M N$ meets the quadrilateral at the point E.

Learning Target 15.2

1. By the angle sum property of a quadrilateral,
$65^{\circ}+65^{\circ}+135^{\circ}+x=360^{\circ}$
$x=360^{\circ}-265^{\circ}=95^{\circ}$.
2. Let the angle of a quadrilateral be x.

Then, all four angles are x
By the angle sum property of a quadrilateral
$x+x+x+x=360^{\circ} \Rightarrow 4 x=360^{\circ} x=90^{\circ}$
3. Do it yourself.
4. Let $\angle A=\angle B=\angle C=x$

$$
\angle D=150^{\circ}(\text { Given })
$$

By the angle sum property of a quadrilateral.

$$
\begin{aligned}
\angle A+\angle B+\angle C+\angle D & =360^{\circ} \\
x+x+x+150^{\circ} & =360^{\circ} \Rightarrow 3 x=360^{\circ}-150^{\circ} \\
x & =\frac{210^{\circ}}{3}=70^{\circ} . \\
\angle A & =\angle B=\angle C=70^{\circ}
\end{aligned}
$$

So,
5. By the angle sum property of a quadrilateral, $125^{\circ}+135^{\circ}+60^{\circ}+75^{\circ}=395^{\circ} \neq 360^{\circ}$
No, sum of the four angles is greater then 360°
6. Let the angles of a quadrilateral are $3 x, 5 x, 7 x$ and $9 x$.

By the angle sum property of a quadrilateral

$$
\begin{aligned}
& 3 x+5 x+7 x+9 x=360^{\circ} \\
& \Rightarrow \quad 24 x=360^{\circ} \\
& \Rightarrow \quad x=15^{\circ}
\end{aligned}
$$

\therefore The angles of the quadrilateral are :

$$
\begin{aligned}
& 3 \times 15=45^{\circ}, 5 \times 15=75^{\circ} \\
& 7 \times 15=105^{\circ} \\
& 9 \times 15=135^{\circ}
\end{aligned}
$$

7. By the angle sum property of a quadrilateral,

$$
\begin{aligned}
\angle A+\angle B+\angle C+\angle D & =360^{\circ} \\
\angle A+\angle B & =360^{\circ}-\left(100^{\circ}+50^{\circ}\right)=210^{\circ} \ldots \text { (i) }
\end{aligned}
$$

In $\triangle A P B$

$$
\angle P A B+\angle P B A+\angle A P B=180^{\circ}
$$

[By the angle sum property of triangle]

$$
\frac{\angle A}{2}+\frac{\angle B}{2}+\angle A P B=180^{\circ}
$$

$$
\left[\because \angle P A B=\frac{\angle A}{2}, \angle P B A=\frac{\angle B}{2}\right]
$$

$$
\frac{1}{2}[\angle A+\angle B]+\angle A P B=180^{\circ}
$$

$$
\angle A P B=180^{\circ}-\frac{1}{2} \times 210^{\circ} \quad[\text { From eq. (i) }]
$$

$$
\angle A P B=75^{\circ}
$$

8. Do it yourself.
9. Do it yourself.

16.

Circle

Exercise 16.1

1. Do it yourself.
2. Do it yourself.
3. $\angle A D B=\angle A C B$
[Angles formed in the same segment are equal]
Hence, $\angle A D B=60^{\circ}$
4. Do it yourself. 5. Do it yourself.
5. In $\triangle A P D$,

$$
\angle P A D+\angle P D A+\angle A P D=180^{\circ}
$$

[By the angle sum property of a triangle]

$$
60^{\circ}+45^{\circ}+\angle A P D=180^{\circ} \Rightarrow \angle A P D=75^{\circ}
$$

$\angle A C D=\angle A P D$ [Angles formed in the same segment are equal] $\angle A C D=75^{\circ}$
7. We know that the angle in a semicircle is a right angle.

$$
\begin{aligned}
\angle B C A & =90^{\circ}, \text { and } \angle B A C=60^{\circ} . \\
\angle A B C+\angle B C A+\angle B A C & =180^{\circ} \\
& {[B y \text { the angle sum property of a triangle }] } \\
\angle A B C & =180^{\circ}-\left(90+60^{\circ}\right)=30^{\circ}
\end{aligned}
$$

8. Do it yourself.
9. $A B=A C$ (Given)

$$
\angle A B C=\angle A C B
$$

[By Isosceles triangle property]
$\angle A C B=55^{\circ}$
In $\triangle A B C$,

$$
\angle A B C+\angle A C B+\angle B A C=180^{\circ}
$$

[By the angle sum property of a Δ]

$$
\begin{aligned}
55^{\circ}+55^{\circ}+\angle B A C & =180^{\circ} \\
\angle B A C & =70^{\circ} \\
\angle B D C & =\angle B A C
\end{aligned}
$$

[Angles formed in the same segment are equal]
10. Do it yourself.

Learning Target 17.1

1. Do it yourself. 2. Do it yourself. 3. Do it yourself.
2. The point A is neither in the exterior nor in the interior of $\triangle A B C$. In fact, the point A lies on the boundary of $\triangle A B C$.
3. (i) and (iii)
4. (i) Yes (ii) Yes (iii) Its diagonals are $\overline{A C}$ and $\overline{B D}$ (iv) diagonal $\overline{A C}$ is in the interior and diagonal $\overline{B D}$ is in the exterior of quadrilateral $A B C D$.
5. (i) Quadrilateral (ii) Triangle (iii) Hexagon (iv) Octagon.
6. It has two diagonals; these are $\overline{P R}$ and $\overline{Q S}$.
7. (i) $\overline{K L}, \overline{M N} ; \overline{L M}, \overline{N K}$ (ii) $\angle K, \angle M ; \angle L, \angle N$ (iii) $\overline{K L}, \overline{L M} ; L \bar{M}, \overline{M N}$ (iv) $\angle K, \angle L ; \angle L, \angle M$.
8. (i) Closed (ii) 3 sided (iii) 5 sided (iv) Octagon.
9. (i) irregular (ii) regular (iii) regular (iv) regular

Learning Target 17.2

1. (i) Linear (ii) Curvilinear (iii) Linear.
2. Do it yourself.
3. (i) $n=9$ sides \Rightarrow sum of interior angles of polygon

$$
=(9-2) \times 180^{\circ}=1260^{\circ}
$$

(ii), (iii) Do it yourself.
4. (i) Sum of the interior angles of polygon $=(n-2) \times 180^{\circ}$
$1440^{\circ}=(n-2) \times 180^{\circ} \Rightarrow n-2=\frac{1440^{\circ}}{180^{\circ}}=8 \Rightarrow n=10$
(ii) Do it yourself.
5. Do it yourself.
6. (i) Given number of sides $n=6$

Each interior angle of the 6 sided polygon $=\frac{(n-2) \times 180^{\circ}}{n}$

$$
=\frac{(6-2) \times 180^{\circ}}{6}=4 \times 30=120^{\circ}
$$

(ii) Do it yourself.
7. Do it yourself.
8. Let the angles of quadrilateral are $4 x, 5 x, 3 x$ and $6 x$. By the angle sum property of a quadrilateral.
$4 x+5 x+3 x+6 x=360^{\circ} \Rightarrow 18 x=360^{\circ}$
$x=20^{\circ}$
The angles of a quadrilateral are :
$4 \times 20=80^{\circ}, 5 \times 20=100^{\circ}, 3 \times 20=60^{\circ}, 60 \times 20=120^{\circ}$
9. Do it yourself.
10. Do it yourself.
11. (i) $160^{\circ}=\frac{(n-2) \times 180^{\circ}}{n} \Rightarrow \frac{160^{\circ}}{80^{\circ}}=\frac{n-2}{n}$

$$
8 n=9 n-18 \Rightarrow n=18
$$

(ii) Do it yourself.
12. (i) Number of sides $=\frac{360^{\circ}}{30^{\circ}}=12$
(ii) Do it yourself.
13. Do it yourself.

Apply Your Mind!

1. (c)
2. (b)
3. (c)
4. (d)
5. (c)

18.

Do it yourself.

19.

 Perimeter and Area
Exercise 19.1

1. (i) Area of parallelogram $=$ base \times height $=8 \times 4.5=36 \mathrm{~cm}^{2}$
(ii), (iii) Do it yourself.
2. Area of parallelogram $=$ base \times height

$$
\begin{aligned}
200 \mathrm{~cm}^{2} & =12 \times \text { height } \\
\text { height } & =\frac{200}{12}=16.67 \mathrm{~cm}
\end{aligned}
$$

3. Do it yourself.
4. (i) Area of parallelogram $A B C D=$ base \times height $=6 \times 3=18 \mathrm{~cm}^{2}$
(ii) Height corresponding to the base

$$
\begin{aligned}
\mathrm{AD} & =\frac{\text { Area of parallelogram } \mathrm{ABCD}}{\mathrm{AD}} \\
\text { Height } & =\frac{18}{4}=4.5 \mathrm{~cm}
\end{aligned}
$$

Learning Target 19.2

1. (i) Radius $=7 \mathrm{~cm}$

Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 7=44 \mathrm{~cm}$
(ii), (iii), (iv) Do it yourself.
2. (i) Area of circle $=\pi r^{2}=\frac{22}{7} \times 14 \times 14=616 \mathrm{~mm}^{2}$
(ii) Diameter $=49 \mathrm{~m} \Rightarrow$ Radius $=\frac{\text { Diameter }}{2}=\frac{49}{2} \mathrm{~m}$

Area of circle $=\pi r^{2}=\frac{22}{7} \times \frac{49}{2} \times \frac{49}{2}=1886.5 \mathrm{~m}^{2}$
(iii), (iv) Do it yourself.
3. The tip of the hand moves in 1 hours

$$
=2 \pi r=2 \times \frac{22}{7} \times 1.4=8.8 \mathrm{~m}
$$

4. , 5. and 6. Do it yourself.
5. Outer circumference of a circular park $=396 \mathrm{~m}$

$$
\begin{aligned}
\Rightarrow & 2 \pi r & =396 \\
\Rightarrow & r & =\frac{396 \times 7}{2 \times 22}
\end{aligned}
$$

Outer radius $r_{1}=63 \mathrm{~m} \Rightarrow$ Inner radius $=63-3.5 r_{2}=59.5 \mathrm{~m}$

Area of the path $=$ outer area - inner area

$$
\begin{aligned}
& =\pi r_{1}^{2}-\pi r_{2}^{2}=\pi\left[(63)^{2}-(59.5)^{2}\right] \\
& =\frac{22}{7} \times(63+59.5)(73-59.5) \\
& =1347.50 \mathrm{~m}^{2}
\end{aligned}
$$

8. Cost of gravelling the path $=1347.50 \times 4.15=₹ 5592.13$

Circumference of a truck wheel $=\frac{26.4 \mathrm{~km}}{12000}=\frac{26.4 \times 1000}{12000}$

$$
\begin{aligned}
2 \pi r & =2.2 \mathrm{~m} \\
r & =\frac{2.2 \times 7}{2 \times 22}=0.35 \mathrm{~m}
\end{aligned}
$$

Diameter of the wheel $=2 \times$ radius $=2 \times 0.35=0.7 \mathrm{~m}$

$$
=0.7 \times 100=70 \mathrm{~cm}
$$

9. Do it yourself.
10. Circumference of circle $=\pi \times d$

$$
\begin{aligned}
44 & =\frac{22}{7} \times d \\
\Rightarrow \quad d & =\frac{44 \times 7}{22}=14 \mathrm{~cm}
\end{aligned}
$$

11. Number of rotation of the wheel $=\frac{\text { Total distance }}{\text { Circumference of wheel }}$

$$
\begin{aligned}
& =\frac{88 \mathrm{~km}}{\pi \times 56 \mathrm{~m}} \\
& =\frac{88 \times 1000 \times 100}{\frac{22}{7} \times 56}=50000
\end{aligned}
$$

12. Do it yourself.
13. Circumference of circle shaped wire $=$ perimeter of rectangle

$$
\begin{aligned}
& =2(18.7+14.3)=2 \times 33 \\
2 \pi r & =66 \mathrm{~cm} \Rightarrow r=\frac{66 \times 7}{22 \times 2} r=10.5 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Area of the circle }=\pi r^{2}=\frac{22}{7} \times 10.5 \times 10.5=346.5 \mathrm{~cm}^{2}
$$

14. Do it yourself.
15. Outer circumference of the circular path $=44 \mathrm{~m}$

$$
2 \pi r=44 \Rightarrow r=\frac{44 \times 7}{22 \times 2}
$$

Outer radius $r_{1}=7 \mathrm{~m}$
Inner radius $r_{2}=7-2=5 \mathrm{~m}$

Inner circumference of circular path

$$
\begin{aligned}
& =2 \pi r_{2}=2 \times \frac{22}{7} \times 5=\frac{220}{7} \\
& =31 \frac{3}{7} \mathrm{~m}
\end{aligned}
$$

Area of the path $=$ Outer area - Inner area $=\pi r_{1}^{2}-\pi r_{2}^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times(7+5) \times(7-5) \\
& =\frac{528}{7}=75 \frac{3}{7} \mathrm{~m}^{2}
\end{aligned}
$$

16. Area of the remaining sheet $=$ Area of circular sheet

$$
\begin{aligned}
& \quad-[2 \times \text { Area of circle }+ \text { Area of rectangle }] \\
& =\pi \times 14^{2}-\left[2 \times \pi \times(3.5)^{2}+3 \times 1\right] \\
& =\frac{22}{7} \times 196-\left[2 \times \frac{22}{7} \times 12.25+3\right] \\
& =22 \times 28-[77+3] \\
& =616-80=536 \mathrm{~cm}^{2}
\end{aligned}
$$

17. Do it yourself.
18. Radius of circular park $r_{1}=\frac{84}{2}=42 \mathrm{~m}$

Radius of outside $r_{2}=42+3.50=45.5$
Area of the constructing road $=\pi r_{2}^{2}-\pi r_{1}^{2}=\pi\left[(45.5)^{2}-(42)^{2}\right]$

$$
\begin{aligned}
& =\frac{22}{7}[45.5+42](45.5-42) \\
& =\frac{22}{7} \times 87.5 \times 3.5 \\
& =22 \times 12.5 \times 3.5=962.5 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of constructing the road $=962.5 \times 240=₹ 231000$
19. Do it yourself.
20. Do it yourself.
21. Circumference of a circle $=31.4$

$$
2 \pi r=31.4 \Rightarrow r=\frac{31.4}{2 \times 3.14}=5 \mathrm{~cm}
$$

Area of the circle $=\pi r^{2}=3.14 \times 5^{2}=3.14 \times 25=78.5 \mathrm{~cm}^{2}$

Apply Your mind!

1. (a)
2. (a)
3. (c)
4. (d)
5. (b)
6. (b)

Volumes and Surface Areas

Learning Target 20.1

1. Faces : $P Q R S, T U V W, P Q U T, S R V W, P S W T, Q R V U$

Edges : $P S, P Q, Q R, R S, T U, U V, V W, W T, P T, S W, U Q, R V$
2. $A B=C D=G H=x, A D=B C=E H=y, A E=B E=D H=z$
3. $A E$ or $B F$ or $C G$ or $D H$
4. ABFE, BCGF, CDHG, DAEH
5. (i) $B F G C$ (ii) $A B C D, E F G H, A B F E, C D H G$ (iii) $A B F E, A B C D$ (iv) $H G, H E, H D$
6. $A B C D, A B F E, A E H D$, vertex G, yes, these are four diagonals $A G, B H, C E, D F$
7. (i) Cuboid : butter box, lunch box, chalk box, air conditioner
(ii) Cube : Ice cubes, sugar cubes, dice, cubical blocks.
8. Cube
9. Cuboid 10. (i) 6 (ii) 12 (iii) Edge
(iv) Dimensions (v) 4(vi) Cube (vii) 8 (viii) Vertex
(ix) Congruent squares (x) 3 (xi) 90° (xii) 4.

Exercise 20.2

1. (i) Volume of cube $=(\text { side })^{3}$

$$
(15)^{3}=\mathbf{3 3 7 5} \mathrm{mm}^{\mathbf{3}}
$$

(ii), (iii) (iv) Do yourself.
2. (i) length $=12 \mathrm{~cm}$, breadth $=10 \mathrm{~cm}$, height $=8 \mathrm{~cm}$

$$
\begin{aligned}
\text { Volume of cuboid } & =\text { length } \times \text { breadth } \times \text { height } \\
& =12 \mathrm{~cm} \times 10 \mathrm{~cm} \times 8 \mathrm{~cm} \\
& =\mathbf{9 6 0} \mathrm{cm}^{3}
\end{aligned}
$$

(ii), (iii), (iv), (v), (vi) Do it yourself.
3. (i) Volume of cuboidal wood $=36 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\text { Length } & =4 \mathrm{~cm}, \text { Breadth }=3 \mathrm{~cm} \\
\text { Height } & =\frac{\text { Volume }}{\text { Length } \times \text { Breadth }} \\
& =\frac{36}{4 \times 3} \mathrm{~cm}=\mathbf{3 ~ c m}
\end{aligned}
$$

4. Do it yourself.
5. One match box volume $=4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$

Such 12 match box volume $=12 \times 4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$

$$
=180 \mathrm{~cm}^{3}
$$

6. and 7. Do it yourself.
7. Volume of cuboidal pit $=8 \mathrm{~m} \times 6 \mathrm{~m} \times 3 \mathrm{~m}$

$$
\begin{aligned}
& =144 \mathrm{~m}^{3} \\
\text { Cost of digging } & =144 \times ₹ 30=₹ \mathbf{4 3 2 0}
\end{aligned}
$$

9. Total required water of population of village $=150 \times 4000$

$$
=600000 \mathrm{~L}
$$

$$
\begin{aligned}
1000 \mathrm{~L} & =1 \mathrm{~m}^{3} \\
600000 \mathrm{~L} & =600 \mathrm{~m}^{3} \\
\text { Days } & =\frac{20 \times 15 \times 6}{600}=\frac{6}{2}=\mathbf{3} \text { days }
\end{aligned}
$$

10. $1000 \mathrm{~L}=1 \mathrm{~m}^{3}$

$$
\begin{aligned}
50000 \mathrm{~L} & =\frac{50000}{1000}=50 \mathrm{~m}^{3} \\
\text { Volume of cuboid } & =\text { Length } \times \text { Breadth } \times \text { Height } \\
50 & =2.5 \times 10 \times \text { Breadth } \\
\text { Breadth } & =\frac{50}{2.5 \times 10}=\mathbf{2 ~ m}
\end{aligned}
$$

11. Joined to two cubes end to end then

$$
\begin{aligned}
\text { Length } & =12 \mathrm{~cm}, \text { Breadth }=6 \mathrm{~cm}, \\
\text { Height } & =6 \mathrm{~cm} \\
\text { Volume of cuboid } & =12 \times 6 \times 6 \mathrm{~cm}^{3}=\mathbf{4 3 2} \mathrm{cm}^{3}
\end{aligned}
$$

12. Number of wooden crates which can be put in the godown

$$
\begin{aligned}
& =\frac{(40 \times 25 \times 15) \mathrm{m}^{3}}{(1.5 \times 1.25 \times 0.5) \mathrm{m}^{3}} \\
& =\mathbf{1 6 0 0 0} \text { crates }
\end{aligned}
$$

13. Side of cube $=x$

Volume of cube $=x^{3}$
(i) Doubled then $2 x$

Volume of cube $=(2 x)^{3}=8 x^{3}=\mathbf{8}$ times
(ii), (iii) Do it yourself.
14. Do it yourself.
15. Number of cubical blocks $=\frac{3.60 \times 3.60 \times 3.60}{0.12 \times 0.12 \times 0.12}=\mathbf{2 7 0 0 0}$ blocks

Learning Target 20.3

1. Surface area of cube $=6 a^{2}$

$$
=6 \times(11)^{2}=6 \times 121=\mathbf{7 2 6} \mathbf{c m}^{2}
$$

(ii), (iii) Do it yourself.
2. Do it yourself.
3. Total surface area of lunch box

$$
\begin{aligned}
& =2(l \times b+b \times h+h \times l) \\
& =2(15 \times 9+9 \times 8+8 \times 15) \\
& =2 \times 327=654 \mathbf{c m}^{2}
\end{aligned}
$$

4. ,5. and 6. Do it yourself.
5. Surface area $=2\left(l^{2}+l^{2}+l^{2}\right)=6 l^{2}=6 \times 15 \times 15=1350$
6. , 9., 10. and 11. Do it yourself.
7. Area of a brick $=2(l b+b h+h l)$

$$
\begin{aligned}
& =2(22.5 \times 10+10 \times 7.5+7.5 \times 22.5) \\
& =937.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Number of brick which can be painted

$$
\begin{aligned}
& =\frac{9.375 \mathrm{~m}^{2}}{937.5 \mathrm{~cm}^{2}}=\frac{9.375 \times 100 \times 100 \mathrm{~cm}^{2}}{937.5 \mathrm{~cm}^{2}} \\
& =100 \text { bricks }
\end{aligned}
$$

13. Area of four walls $=2 \times h(l+b)$

$$
=2 \times 5 \times(10+8)=180 \mathrm{~m}^{2}
$$

Required length of wallpaper $l \times \frac{50}{100}=\frac{180}{1}$

$$
\begin{aligned}
& l=\frac{180 \times 100}{50} \mathrm{~m} \\
& l=180 \times 2=\mathbf{3 6 0} \mathbf{m}
\end{aligned}
$$

14. Do it yourself.
15. Area of four walls $=2 \times h \times(l+b)$

$$
\begin{aligned}
& =2 \times 5 \times(15+10) \\
& =10 \times 25=250 \mathrm{~m}^{2} \\
\text { Area of roof } & =l \times b \\
& =15 \times 10=150 \mathrm{~m}^{2} \\
\text { Total painted area } & =(250+150) \mathrm{m}^{2}=\mathbf{4 0 0} \mathbf{~ m}^{2}
\end{aligned}
$$

Apply Your Mind!

1. (c) According to question

$$
\begin{aligned}
b & =2 \times h \\
b & =2 h \text { and } b=\frac{1}{2} \times l \\
2 h & =\frac{1}{2} l \\
h & =\frac{1}{4} l
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of room } & =512 \mathrm{~m}^{3} \\
l \times b \times h & =512 \mathrm{~m}^{3} \\
l \times \frac{1}{2} l \times \frac{1}{4} l & =512 \mathrm{~m}^{3} \\
l^{3} & =512 \times 8 \\
l^{3} & =16 \times 16 \times 2 \times 8 \\
l^{3} & =16 \times 16 \times 16 \\
l^{3} & =16^{3} \Rightarrow \quad l=\mathbf{1 6} \mathbf{~ m}
\end{aligned}
$$

2. (c) Volume of wall $=l \times b \times h \quad[\because 1 \mathrm{~m}=100 \mathrm{~cm}]$

$$
\begin{aligned}
& =800 \mathrm{~cm} \times 600 \mathrm{~cm} \times 22.5 \mathrm{~cm} \\
& =10800000 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of each brick $=25 \mathrm{~cm} \times 11.25 \mathrm{~cm} \times 6 \mathrm{~cm}$

$$
=1687.50 \mathrm{~cm}^{3}
$$

Required number of bricks to build a wall

$$
\begin{aligned}
& =\frac{\text { Volume of wall }}{\text { Volume of one brick }} \\
& =\frac{10800000 \mathrm{~cm}^{3}}{1687.50 \mathrm{~cm}^{3}}=\mathbf{6 4 0 0} \text { bricks }
\end{aligned}
$$

Thus number of bricks needed to build a wall is 6400 .

21.

 Data Handling
Learning Target 21.1

1. (i) tables, charts
(ii) fives
(iii) ungrouped
(iv) X
(v) median, descending
2. (i) Arrange the data in ascending order $2,2,3,5,7,9,9,10,11$

Here,
Median

$$
n=9 \text { (odd) }
$$

$=\frac{1}{2}(n+1)$ th term $=\frac{1}{2}(9+1)$ th $=\frac{1}{2} \times 10$ th $=5$ th term $=7$
(ii), (iii) Do it yourself.
3. (i) Arrange the data in ascending order $5,6,7,7,7,8,9,10,11$ obviously, 7 occurs maximum number of times Hence, Mode = 7
(ii) Do it yourself.
4. Mean : The mean of a set of observations (ungrouped data) is equal to their sum divided by the total number of observations. Median : For finding the median of ungrouped data, we have to arrange it in ascending or descending order of magnitude. The value of the middle-most observation represents the median of the data.
5. Mean $\bar{X}=\frac{1+2+3+4+5+6+7+8+9+10}{10}=\frac{55}{10}=5.5$
6. , 7. and 8. Do it yourself.
9. First 15 odd number $1,3,5,7,9,11,13,15,17,19,21,23,25$, 27, 29

$$
\begin{aligned}
n & =15(\text { odd }) \\
\text { median } & =\frac{1}{2}(n+1) \text { th } \\
\text { term } & =\frac{1}{2}(1+15) \text { th } \\
\text { term } & =8 \text { th term } \\
\text { median } & =15
\end{aligned}
$$

Model Test Paper-I

1. (i) T
(ii) F
(iii) F
(iv) F
(v) F
2. (i) 1
(ii) -1
(iii) 0
(iv) -3065
(v) -312
(vi) -567
3. A farmer can put up a fence in one day $=\frac{1}{3} \mathrm{~km}$

A farmer can put up a fence in $6 \frac{2}{3}$ days $=\frac{1}{3} \times \frac{20}{3}=\frac{20}{9}$ $=2 \frac{2}{9} \mathrm{~km}$
4. (i) $\frac{2}{3}$
(ii) $\frac{1}{-5}$
(iii) $\frac{1}{100}$
(iv) 1
(v) $\frac{3}{20}$
5. Charges for one unit $=₹ 4.28$

Charges for 49 units $=₹ 4.28 \times 49=₹ 209.72$
6. (i) $\frac{1 \times 5}{4 \times 5}=\frac{5}{20}$
(ii) to (v) Do it yourself.
7. (i) $\frac{-144}{-504}=\frac{-144 \div 72}{-504 \div 72}=\frac{2}{7}$
(ii) to (iv) Do it yourself.
8. (i) $\frac{5}{8}-\frac{7}{8}=\frac{-2}{8}=\frac{-1}{4}$

$$
\frac{7}{8}-\frac{5}{8}=\frac{2}{8}=\frac{1}{4}
$$

(ii), (iii) Do it yourself.
9. (i) $\frac{4}{15} \times \frac{9}{5} \times \frac{50}{3}=\frac{4}{5} \times \frac{3}{5} \times \frac{50}{3}=\frac{4}{25} \times \frac{50}{1}=8$
(ii) Do it yourself.
(iii) $\left(\frac{-3}{2} \times \frac{4}{5}\right)+\left(\frac{9}{5} \times \frac{-10}{3}\right)-\left(\frac{1}{2} \times \frac{3}{4}\right)$

$$
\begin{aligned}
& =\left(\frac{-3}{1} \times \frac{2}{5}\right)+\left(\frac{3}{1} \times \frac{-2}{1}\right)-\left(\frac{3}{8}\right) \\
& =\frac{-6}{5}-6-\frac{3}{8}=\frac{-48-240-15}{40}=\frac{-303}{40}=-7 \frac{23}{40}
\end{aligned}
$$

(iv) Do it yourself.
10. (i) $\frac{1}{243}=\frac{1}{3 \times 3 \times 3 \times 3 \times 3}=\frac{1}{3^{5}}=\left(\frac{1}{3}\right)^{5}$
(ii), (iii), (iv) Do it yourself.
11. (i) $1050000=\mathbf{1 . 0 5} \times \mathbf{1 0}^{\mathbf{6}}$
(ii) $1353000000=\mathbf{1 . 3 5 3} \times \mathbf{1 0}^{9}$

$$
1361000000=1.361 \times \mathbf{1 0}^{\mathbf{9}}
$$

(iii) $1027000000=\mathbf{1 . 0 2 7} \times \mathbf{1 0}^{\mathbf{9}}$

$$
531200000=\mathbf{5 . 3 1 2} \times \mathbf{1 0}^{\mathbf{8}}
$$

$$
495800000=4.958 \times \mathbf{1 0}^{\mathbf{8}}
$$

(iv) $\frac{1}{1000000}=\frac{1}{10^{6}}=\mathbf{1} \times \mathbf{1 0}^{-6}$
12. (i) binomial (ii) trinomial (iii) monomial
(iv) trinomial(v) binomial
13. Let the total worth of Shanti lal's property be x

$$
\begin{aligned}
\text { Son's share } & =\frac{x}{5} \\
\text { Daughter's share } & =\frac{x}{5} \\
\text { Wife's share } & =\frac{3 x}{5} \\
\text { If wife's share } & =288000 \\
288000 & =\frac{3 x}{5}
\end{aligned}
$$

$$
\begin{aligned}
3 x & =288000 \times 5 \\
x & =\frac{288000 \times 5}{3}=\mathbf{4 8 0 0 0 0}
\end{aligned}
$$

14. Time

Speed

It is a inverse variation

$$
\begin{aligned}
& & \frac{x}{12} & =\frac{20}{15} \\
\Rightarrow & & x & =\mathbf{1 6} \mathbf{k m} / \mathrm{h}
\end{aligned}
$$

15. Persons

Day
6
21 $\left.\begin{aligned} & 7 \\ & x\end{aligned} \right\rvert\,$
$\frac{6}{21}=\frac{x}{7} \Rightarrow x=\frac{7 \times 6}{21}=2$ days

Model Test Paper-II

1. The population of the town in 2020 be x

$$
\begin{aligned}
\frac{5 \times x}{100} & =8820 \\
x & =\frac{8820 \times 100}{5} \\
x & =\mathbf{1 7 6 4 0 0}
\end{aligned}
$$

2.

Purchased		Overhead expenses	Cost price	Selling price	Profit	Loss	$\begin{gathered} \text { Profit } \\ \% \end{gathered}$	$\begin{gathered} \text { Loss } \\ \% \end{gathered}$
(i)	₹ 240	₹ 10	₹ 250	₹ 235	-	₹ 15	-	6
(ii)	₹ 370	₹ 80	₹ 450	₹ 540	₹ 90	-	₹ 20	-
(iii)	₹ 3000	₹ 100	₹ 3100	₹ 3038	-	₹ 62	-	2
(iv)	₹ 28000	₹ 2000	₹ 30000	₹ 36000	₹ 6000	-	20	-
(v)	₹ 400	₹ 500	₹ 900	₹ 972	₹ 72	-	8	-

3. (i) Simple interest $=\frac{P \times R \times T}{100}=\frac{800 \times 6 \times 4}{100}=₹ 192$

Amount $=800+192=₹ 992$
(ii), (iii) Do it yourself.
4. (i) $55^{\circ}+125^{\circ}=180^{\circ}$

So, pair of the angles are supplementry.
(ii) $34^{\circ}+56^{\circ}=90^{\circ}$

So, pair of the angles are complementry.
(iii), (iv), (v), (vi) Do it yourself.
5. (i) Property of corresponding angles,
(ii) Property of alternate interior angles
(iii) property of Co-interior angles are supplementry.
6. (i) Line segment, perpendicular,
(ii) Outside,
(iii) AC
(iv) Concurrent
(v) Centroid
7. Do it yourself.
8. (i) Four $-P Q$ and $Q R, Q R$ and $R S, R S$ and $S P, S P$ and $P Q$
(ii) Two $-P Q$ and $R S, P S$ and $Q R$
(iii) Four- $\angle P$ and $\angle Q, \angle Q$ and $\angle R, \angle R$ and $\angle S, \angle S$ and $\angle P$
(iv) Two $-\angle P$ and $\angle R, \angle Q$ and $\angle S$
9. Do yourself.
10. (i) Interior points A, C, D, E, F

Exterior points $=P, Q, R, S, T$
(ii) Do yourself.
11. Do yourself.
12. Length of a wire $=$ perimeter of a triangle

$$
=4.4+4.4+4.4=13.2 \mathrm{~cm}
$$

Circumference of a circle $=13.2 \mathrm{~cm}$

$$
2 \pi r=13.2 \Rightarrow r=\frac{13.2 \times 7}{2 \times 22}=2.1 \mathrm{~cm}
$$

Area of circle $=\pi r^{2}=\frac{22}{7} \times 2.1 \times 2.1=13.86 \mathrm{~cm}^{2}$
13. (i) Area of the tin sheet required to make 20 such tins

$$
\begin{aligned}
& =2[26 \times 26+26 \times 45+45 \times 26] \times 20 \\
& =120640 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Cost of the tin sheet $=12.0640 \times 20=₹ 241.28$
14. (i) Arrange the data in ascending order $2,2,3,5,7,9,9,10,11$

$$
\begin{aligned}
n & =9(\text { odd }) \\
\text { Median } & =\frac{1}{2}(n+1) \text { th } \\
\text { term } & =\frac{1}{2}(9+1) \text { th }=5 \text { th term }=7
\end{aligned}
$$

(ii), (iii) Do yourself.
15. Do it yourself.

