

NathSing A Textbook of Mathematics

Unit-I : Number System

1.

Integers

Exercise

1	
1	

xer	cise											
1.					Seco	ond N	Jum	ber				
		x	_4	-3	-2	-1	0	1	2	3	4	
		-4	16	12	8	4	0	-4	-8	-12	-16	
		-3	12	9	6	3	0	-3	-6	-9	-12	
	er	-2	8	6	4	2	0	-2	-4	-6	-8	
	First Number	-1	4	3	2	1	0	-1	-2	-3	-4	
	Nu	0	0	0	0	0	0	0	0	0	0	
	rst	1	-4	-3	-2	-1	0	1	2	3	4	
	Fi	2	-8	-6	-4	-2	0	2	4	6	8	
		3	-12	-9	-6	-3	0	3	6	9	12	Yes; Yes;
		4	-16	-12	-8	-4	0	4	8	12	16	$a \times b = b \times a$
2.	(i)	Posit	tive (ii) Po	sitiv	e (iii)	Neg	gativ	e (iv) Neg	gative	
3.	(i)	(156	9×8	87) -	- (56	9 × 8	387)	່⇒	88	37 (15	- 569 –	569)
								= 8	387 >	< 100	0 = 8	87000
	(ii)	0 (ii	i) 18	300 ((iv) 1	8946	500	(v) –	1562	500	(vi) –	4800
4.	(i)	$x \times ($	(-1)=	-40	\Rightarrow	(-4	10) ×	(-1)= 4	0		
	(ii)	- 46	5, (iii)	0								
5.	(i)	(8 +	9) ×	10 an	d 8 -	⊦ 9 ×	10					
	17×10 and $8 + 90$											
	170 > 98											
	So, $(8 + 9) \times 10 > 8 + 9 \times 10$											
	(ii)	(8–	9) × (10, (i	iii)[(-2)	-(5))]×(-6)			
6.	Do	it yo	ursel	f.								
7.) = -3							60		
8.	a ×	(-1)) = 30) =	> 3	0 × (-	-1)=	3	0			
			negat			_						
9.	(i)	18 ÷	(-3)	= (18	3) × -	1	-6					
	(ii)	(-1	8) ÷ 3	3 = (-	18) :	$\times \frac{1}{2} =$	-6					
						-						
	(iii) (–1	.8) ÷	(–3)	= -1	8 × -	<u>-</u> 3=	6				

2.

Fractions

Exercise 2.1 1. (i) $\frac{9}{30} + \frac{11}{30} = \frac{15}{30} = \frac{9+11+15}{30} = \frac{35}{30} = \frac{7}{6}$ (ii) 1, (iii) $\frac{37}{10}$, (iv) $\frac{7}{10} + \frac{14}{25} + \frac{8}{15} = \frac{15 \times 7 \times 6 \times 14 + 10 \times 8}{150}$ $= \frac{105+84+80}{150} = \frac{269}{150}$ (v) $8\frac{17}{26}$, (vi) $8\frac{2}{45}$ 2. (i) $\frac{8}{17} - \frac{5}{17} = \frac{8-5}{17} = \frac{3}{17}$ (ii) $\frac{2}{19}$, (iii) $\frac{1}{12}$, (iv) $\frac{17}{50}$ (v) $3\frac{2}{5} - 1\frac{3}{10} = \frac{17}{5} - \frac{13}{10} = \frac{17 \times 2 - 13 \times 1}{10} = \frac{34-13}{10} = \frac{21}{10}$ (vi) $\frac{1}{2}$

2

3. (i) $\frac{3}{4} + \frac{15}{16} - \frac{13}{8} = \frac{3 \times 4 + 15 \times 1 - 13 \times 2}{16}$ $=\frac{12+15-26}{16}=\frac{27-26}{10}=\frac{1}{16}$ (ii) $\frac{119}{240}$ (iii) $4\frac{9}{10}$ (iv) $4\frac{13}{15}$ (v) $3\frac{3}{4}$ (vi) $7\frac{3}{20}$ **4.** $2\frac{5}{7} + x = 4\frac{1}{14}$ $x = \frac{57}{14} - \frac{19}{7} = \frac{57 - 19 \times 2}{14} = \frac{57 - 38}{14} = \frac{19}{4} = \mathbf{1}\frac{\mathbf{5}}{\mathbf{14}}$ 5. $5\frac{2}{10} - x = 3\frac{5}{28}$ $x = \frac{97}{19} - \frac{119}{38} = \frac{194 - 119}{38} = \frac{75}{38} = \mathbf{1}\frac{\mathbf{37}}{\mathbf{38}}$ 6. Cost of a book = ₹ $85\frac{1}{5}$ Cost of a notebook = ₹ $25\frac{1}{4}$ The total cost of both items = ₹ $85\frac{1}{5} + ₹ 25\frac{1}{4}$ $=(85+25)+\left(\frac{1}{5}+\frac{1}{4}\right)$ $=110 + \left(\frac{4+5}{20}\right) = 110 + \frac{9}{20} = ₹ 110\frac{9}{20}$ **7.** $\frac{4}{7}$ th, $\frac{5}{8}$ th $\frac{32, 35}{56}$ Since **35** > **32**. (So his daughter got more of his property.) 8. Megha by $\frac{3}{20}$ m **9.** $\frac{1}{17}, \frac{3}{19}, \frac{5}{21}$ <u>399, 1071, 1615</u> <u>6783</u> Since **399** < **1017** < **1615** So, Soap C has most and soap A has least incence. **10.** $11\frac{1}{20}$ kg **11.** Length of pencil = $17\frac{3}{4} = \frac{71}{4}$ cm

It is sharpened = $2\frac{1}{3} = \frac{7}{3}$ cm Remaining length = $\frac{71}{4} - \frac{7}{3} = \frac{213 - 28}{12} = \frac{185}{2} = 15\frac{5}{12}$ cm 12. Naman walks to go school = $5\frac{1}{2}$ km = $\frac{11}{2}$ km Naman sides to bus = $12\frac{3}{4}$ km = $\frac{51}{4}$ km Naman walks again = $1\frac{2}{3} = \frac{5}{3}$ km Total distance = $\frac{11}{2} + \frac{51}{4} + \frac{5}{3}$ = $\frac{66 + 153 + 20}{12} = \frac{239}{12} = 19\frac{11}{12}$ km

Exercise 2.2

1. (i) $\frac{5}{11} \times \frac{11}{5} = \frac{55}{55} = 1$ (ii) 1, (iii) $\frac{2}{9}$ (iv) $3\frac{1}{5} \times \frac{25}{32} = \frac{16}{5} \times \frac{25}{32} = \frac{5}{2} = 2\frac{1}{2}$ (v) $2\frac{1}{3}$ (vi) 24 (vii) 8 (viii) $17\frac{1}{15}$ (ix) 264 (x) $5\frac{1}{7}$ 2. (i) $\frac{5}{6} \times \frac{32}{25} \times \frac{3}{2} = \frac{8}{5} = 1\frac{3}{5}$ (ii) $1\frac{13}{15}$ (iii) $\frac{2}{15}$ (iv) $\frac{27}{70}$ (v) $\frac{36}{175}$ (vi) $\frac{16}{77}$ 3. (i) One-half of ₹ 124 = $\frac{1}{2}$ of ₹ 124 = $\frac{1}{2} \times ₹$ 124 = ₹ 62 (ii) 2 (iii) 3 (iv) 24 minutes 4. Cost of 1 kg rice = ₹ 44\frac{2}{3} = ₹ \frac{134}{3} Cost of $3\frac{1}{3}$ kg rice = $\frac{134}{3} \times 3\frac{1}{3} = \frac{134}{3} \times \frac{10}{3} = ₹$ 148 $\frac{8}{9}$ 5. Speed of fox = $150\frac{2}{3}$ mile/hour = $\frac{4520}{3}$ = 1506 $\frac{2}{3}$ mile/hour Speed of panther = $\frac{452}{3} \times 10 = \frac{4520}{3} = 1506\frac{2}{3}$ mile/hour 6. A farmer can put up a fence in one day = $\frac{1}{3}$ km A farmer can put up a fence in $6\frac{2}{3}$ days $= \frac{1}{3} \times \frac{20}{3} = \frac{20}{9} = 2\frac{2}{9}$ km 7. Johny spends on food and rent $= \frac{3}{5}$ Remaining part of his salary $= 1 - \frac{3}{5} = \frac{2}{5}$ Now, $\frac{1}{5}$ of $\frac{2}{5} = \frac{1}{5} \times \frac{2}{5} = \frac{2}{25}$ $\frac{2}{25}$ of ₹ 40,000 = ₹ 3200 So, Johny donates ₹ 3200. 8. weight of 1 marble $= 10\frac{1}{2}$ grams $= \frac{21}{2}$ grams weight of 230 marbles $= \frac{21}{2} \times 230$ gram = 2415 grams 9. A car can run in 1 L of petrol $= 16\frac{1}{4}$ km OR $\frac{65}{4}$ km A car can run in $5\frac{2}{3}$ L of petrol $= \frac{65}{4} \times \frac{17}{3} = \frac{1105}{12} = 92\frac{1}{12}$ km

Exercise 2.3

1. (i) The reciprocal of
$$\frac{3}{2} = \frac{2}{3}$$

(ii) $-\frac{1}{5}$ (iii) $\frac{1}{100}$ (iv) 1 (v) $\frac{3}{20}$
2. (i) $\frac{4}{5} \div \frac{7}{15} \Rightarrow \frac{4}{5} \times \frac{15}{7} = \frac{12}{7} = 1\frac{5}{7}$
(ii) $1\frac{3}{4}$ (iii) $\frac{3}{4}$ (iv) 12 (v) $\frac{4}{25}$
(vi) $3\frac{4}{7} \div 1\frac{5}{14} \Rightarrow \frac{25}{7} \div \frac{19}{4} \Rightarrow \frac{25}{7} \times \frac{14}{19} = \frac{50}{19} = 2\frac{12}{19}$
(vii) $10\frac{5}{7}$ (viii) 80 (ix) $\frac{17}{22}$

3. A factory produced steel in a month =
$$6000\frac{3}{12} = \frac{72003}{12}$$
 tons
A factory produced steel in a day = $\frac{72005}{12} \div 30$
= $\frac{72005}{12} \times \frac{1}{30} = \frac{14401}{72}$
= $200\frac{1}{72}$ tons

4. The product of two numbers = $5\frac{2}{3} = \frac{17}{3}$ One of them = $2\frac{4}{15} = \frac{34}{15}$ Other number = $\frac{17}{3} \div \frac{34}{15} = \frac{17}{3} \times \frac{15}{34} = 2\frac{1}{2}$ **5.** The number should be multiplied $\frac{5}{6} \div 3\frac{4}{7}$ $=\frac{5}{6} \div \frac{25}{7} = \frac{5}{6} \times \frac{7}{25} = \frac{7}{30}$ **6.** A boat can carry = 690 kg A box weight = $7\frac{2}{3} = \frac{23}{3}$ kg Thus the boat can carry = $690 \div \frac{23}{3} = \frac{690 \times 3}{23} = 90$ boxes 7. Speed = $\frac{\text{Distance}}{\text{Time}} = \frac{420\frac{2}{5}}{4\frac{1}{2}} = \frac{\frac{2102}{5}}{\frac{21}{2}} = \frac{2102}{21} = 100\frac{2}{21} \text{ km/hr}$ 8. Area of rectangle = $83\frac{3}{4}$ m² = $\frac{335}{4}$ m² One side of rectangle = $12\frac{1}{2}$ m = $\frac{25}{2}$ m Other side of rectangle = $\frac{335}{4} \div \frac{25}{2} = \frac{335}{4} \times \frac{2}{25} = \frac{67}{10} = 6\frac{7}{10}$ m **9.** Number of cans of juice $=\frac{20}{1\frac{1}{2}}=\frac{20\times 3}{4}=$ **15 cans 10.** 160.

3.

Exercise 3.1

1.	(i) 4.0300, 4.0303, 0.4000, 0.0400
	(ii) 1.2100, 56.0000, 0.2359, 12.1000, 0.0120
2.	(i) 3.9129, 39.0129, 39.129, 39.219
	(ii) 0.0501, 0.5019, 2.05019, 2.5019
	(iii) 0.0004, 0.00234, 0.0034, 0.02340
	(iv) 30.0506, 32.0056, 32.0506, 32.05061
	(v) 0.00123, 0.00124, 0.00213, 0.00412

Decimal

3. (i) 1.11, 1.101, 1.1, 1.0101, 1.01 (ii) 2.43, 2.4, 2.34, 2.3, 2 (iii) 99.09, 9.09, 0.990, 0.909, 0.099.

Exercise 3.2

- **1.** (i) $\frac{5}{4}$ (ii) $\frac{189}{25}$ (iii) $\frac{528}{25}$ (iv) $\frac{401}{25}$ (v) $\frac{19}{5}$ (vi) $\frac{1057}{20}$ (vii) $\frac{359}{25}$ (viii) $\frac{99}{1000}$
- **2.** (i) 3.75 (ii) 8.875 (iii) 30.1875 (iv) 4.44
- **3.** (i) 0.05 (ii) 0.02 (iii) 38.5 (iv) 0.0052 (v) 0.00517 (vi) 0.000111 (vii) 49.0.

Exercise 3.3

- (i) 15.2 (ii) 4.26 (iii) 0.8 (iv) 45.039 (v) 1.30 (vi)103.51 (vii) 0.1 (viii) 9.31
- **2.** (i) 3.58 (ii) 1.67 (iii) 77.64 (iv) 19.79 (v) 33.00
- **3.** (i) 33.46 (ii) 90.159 (iii) 290.088 (iv) 863.954
- **4.** (i) 555.55 (ii) 920.034
- **5.** (i) 10.81 (ii) 28.901 (iii) 238.77 (iv) 5.7746
- 6. Twinkle had thread = 100 m Thread broke = 12.03 m Left thread = 100 m - 12.03 m = 87.97 m
- Rahim was standing from a plane mirror = 5.36 ft
 The distance of image from him = 5.36 ft + 5.36 ft = 10.72 ft
- 8. Mrs. Saasha bought flour = 4 kg 250 g
 Mrs. Saasha bought nuts = 3 kg 50 g
 Mrs. Saasha bought olive oil = 350 g
 Total weight did she buy = 4 kg 250 g + 3 kg 50 g + 350 g

= 7 kg 650 g

- 9. The length of triathlon = 10 km Kunal ran = 5.1 km Kunal cycled = 4.2 km Total of running and cycling = 5.1 km + 4.2 km = 9.3 km Rest distance = 10 km - 9.3 km = 0.7 km So, Kunal swam 0.7 km.
- **10.** It must be added = 301.5 294.315 = **7.185**
- **11.** It must be subtracted = 90.1 9.09 = **81.01**

Exercise 3.4

1.	(i) 253.6 (ii) 40.5 (iii) 0.31 (iv) 1456 (v) 150.4 (vi) 1603.5 (vii) 251.92 (viii) 1052 (ix) 22.3 (x) 1330 (xi) 0.56 (xii) 5010 (xiii) 10 (xiv) 321150 (xv) 5.6 (xvi) 50560 (xvii) 103056.1 (xviii) 35600
2.	(i) 276.6 (ii) 135.9 (iii) 28.88 (iv) 44.226 (v) 8603.96
	(vi) 6565.02 (vii) 15.75 (viii) 590.9418 (ix) 8.4048 (x) 1.4706
	(xi) 0.03542 (xii) 483.242 (xiii) 0.096768 (xiv) 660.6072
	(xv) 204.308
3.	(i) 27.9 (ii) 16.65 (iii) 1094.445 (iv) 0.02037 (v) 731.432701
4.	A fan rotates per minute = 123.5
	The fan adjusted 3.5 times more = 123.5×3.5
	= 432.25 per minute
5.	A box of wood weighs = 13.3 kg
	15 boxes of wood weigh = 13.3×15 kg = 199.5 kg
6.	Motor bike goes in 1 L petrol = 67.33 km
	Motor bike goes in 3.25 L of petrol = 67.33×3.25
	= 218.8225 km
7.	Charges for one unit = ₹ 4.28
	Charges for 49 units = ₹ $4.28 \times 49 = ₹$ 209.72
8.	Mohan spent for rice = ₹ $36.30 \times 2.5 = ₹ 90.75$
	Mohan spent for apples = ₹ $50.50 \times 4 = ₹ 202.00$
	Mohan spent for petrol = ₹ $12.39 \times 79.03 = ₹ 979.18$
	Mohan spent total = ₹ 90.75 + ₹ 202.00 + ₹ 979.18 = ₹ 1271.93
xer	cise 3.5

Exercise 3.5

- **1.** (i) 5.6 (ii) 2.35 (iii) 0.0051 (iv) 0.093 (v) 0.832 (vi) 0.007
- (i) 1.3265 (ii) 2.5912 (iii) 0.732 (iv) 0.005 (v) 0.07 (vi) 5.629 (vii) 0.27321 (viii) 0.0052 (ix) 0.0006
- **3.** (i) 3.5 (ii) 117.25 (iii) 2.56 (iv) 17.475 (v) 0.625 (vi) 0.9375
- **4.** (i) 3.2 (ii) 56.24 (iii) 566.47 (iv) 0.0234 (v) 0.0049 (vi) 45.63 (vii) 0.89 (viii) 0.079 (ix) 2.354
- **5.** (i) 5.4 (ii) 0.56 (iii) 13.56 (iv) 23.278 (v) 0.0467 (vi) 0.0489
- 6. Cost of 31 toffees = ₹ 173.60
 Cost of 1 toffee = ₹ 173.60 + 31 = ₹ 5.60
- **7.** Number of sweet balls = $588.38 \text{ g} \div 45.26 = 13$
- 8. Total of rainfall in one month = 37.02 mmRainfall in one day = $37.02 \text{ mm} \div 30 = 1.234 \text{ mm}$

Exercise 4.1

1. (i) F (ii) T (iii) F (iv) T (v) F (vi) F
2. (i) 12 (ii) 6 (iii) -15 (iv) -67
3. (i) 7 (ii) 49 (iii) -9 (iv) -9
4. (i)
$$\frac{1}{4} \times \frac{5}{5} = \frac{5}{20}$$
 (ii) $\frac{1 \times 9}{4 \times 9} = \frac{9}{36}$
(iii) $\frac{-20}{-80}$ (iv) $\frac{1 \times 1000}{4 \times 1000} = \frac{1000}{4000}$ (iv) $\frac{1 \times -25}{4 \times -25} = \frac{-25}{-100}$
5. (i) $\frac{2}{10} = \frac{2 \times 1}{2 \times 5} = \frac{1}{5}$
(ii) $\frac{-36}{180} = \frac{-2 \times 2 \times 3 \times 3}{2 \times 2 \times 3 \times 3 \times 5} = \frac{-1}{5}$
 $\frac{2 | 36}{3 | 3|}$ $\frac{2 | 180}{3 | 45|}$
 $\frac{2 | 30}{3 | 45|}$ $\frac{3 | 45|}{3 | 15|}$
6. (i) $\frac{2}{3} = \frac{x}{135}$
By cross multiplication
 $2 \times 135 = 3 \times x$
 $x = \frac{2 \times 135}{3}$
OR $x = 2 \times 45 | x = 90$
(ii) $\frac{5}{x} = \frac{90}{216}$
By cross multiplication
 $90 \times x = 5 \times 216$
 $x = \frac{5 \times 216}{90} \Rightarrow x = 12$
(iii) 7, (iv) 8

(v)
$$\frac{72}{81} = \frac{8}{x}$$

By cross multiplication
 $i.e, \qquad x = \frac{8 \times 81}{72}$ OR $x = \frac{81}{9}$ $x = 9$
7. (i) $\frac{-144}{-504} = \frac{144}{504} = \frac{2 \times 2 \times 2 \times 2 \times 3 \times 3}{2 \times 2 \times 2 \times 3 \times 3 \times 7} = \frac{2}{7}$
 $\frac{2}{2} \frac{144}{2} \frac{2}{72} \frac{2}{2} \frac{36}{2} \frac{2}{126} \frac{2}{2} \frac{126}{2} \frac{3}{2} \frac{3}{1} \frac{3}{1} \frac{3}{1} \frac{3}{1} \frac{3}{1} \frac{3}{1} \frac{3}{1} \frac{2}{1} \frac{2}{7} \frac{7}{7} \frac{7}{1} \frac{1}{1}$
(ii) $\frac{2}{7}$
(iii) $\frac{240}{-840} = \frac{24}{-84}$
 $= \frac{2 \times 2 \times 2 \times 3 \times 7}{-2 \times 2 \times 3 \times 7} = \frac{2}{-7}$
 $\frac{2}{2} \frac{24}{2} \frac{2}{12} \frac{2}{6} \frac{3}{3} \frac{3}{1} \frac{7}{7} \frac{7}{7} \frac{1}{1}$
(iv) $\frac{225}{625} = \frac{3 \times 3 \times 5 \times 5}{5 \times 5 \times 5 \times 5} = \frac{9}{25}$
 $\frac{5}{3} \frac{225}{5} \frac{5}{5} \frac{5}{$

Exercise 4.2

1. (i) F (ii) F (iii) F (iv) T (v) F (vi) F (vii) T
2. (i)
$$\frac{2 \times -28}{5 \times -28} = \frac{-56}{-140}$$
 (ii) $\frac{2 \times 77}{5 \times 77} = \frac{154}{385}$

(iii) $\frac{2 \times -375}{5 \times -375} = \frac{-750}{-1875}$ (iv) $\frac{2 \times 250}{5 \times 250} = \frac{500}{1250}$ (v) $\frac{-6250}{-15625}$ **3.** (i) $\frac{5}{6}$ and $\frac{7}{9}$ LCM of 6 and 9 is 18. $\frac{5}{6}, \frac{7}{9}$ $=\frac{5\times3,7\times2}{18}=\frac{15}{18},\frac{14}{18}$ (ii) $\frac{8}{12}$, $\frac{10}{12}$ and $\frac{7}{12}$ (iii) $\frac{4}{5}$, $\frac{17}{20}$, $\frac{23}{40}$ and $\frac{11}{16}$ LCM of 5, 20, 40 and 16 is 80. $=\frac{4 \times 16, 17 \times 4, 23 \times 2, 11 \times 5}{22}$ $=\frac{64, 68, 46, 55}{80}=\frac{64}{80}, \frac{68}{80}, \frac{46}{80}, \frac{55}{80}$ **4.** Do it yourself. 5. (i) $\frac{-9}{12}$ and $\frac{8}{-12}$ Because numerators are not equal. $\frac{-9}{12} \neq \frac{8}{-12}$ Therefore (ii) $\frac{-16}{20}$ and $\frac{20}{-25}$ LCM of 20 and 25 is 100. $=\frac{-16\times5,\,-20\times4}{100}=\frac{-80,\,-80}{100}$ $\frac{-80}{100}, \frac{-80}{100}$ or $\frac{-80}{100} = \frac{-80}{100}$ $\frac{-16}{20} = \frac{20}{-25}$ Clearly Therefore (iii) $\frac{-7}{21} \neq \frac{3}{9}$ 11

(iv)
$$\frac{-8}{-4}$$
 and $\frac{13}{21}$
LCM of 14 and 21 is 42.

$$=\frac{8 \times 3, 13 \times 2}{42} = \frac{24}{42}, \frac{26}{42}$$
[: Numerators are not equal]
Therefore $\frac{-8}{-14} \neq \frac{13}{21}$
6. (i) $-\frac{4}{11}, \frac{3}{11} \Rightarrow \frac{3}{11} > \frac{-4}{11}$:: $3 > -4$
(ii) $-\frac{5}{3}, \frac{3}{4}$
LCM of 4 and 8 is 8.

$$=\frac{-5 \times 1, -3 \times 2}{8} = \frac{-5}{8}, \frac{-6}{8}, \Rightarrow \frac{-5}{8} > \frac{-3}{4}$$
(iii) $\frac{-7}{12} > \frac{5}{-8}$
(iv) $\frac{-4}{9}, \frac{-3}{-7}$
LCM of 7 and 9 is 63.
 $\frac{(-4) \times 7, 9 \times 3}{63} = \frac{-28, 27}{63} = \frac{-28}{63}, \frac{27}{63}$
Hence, $\frac{3}{7} > \frac{-4}{9}$
7. (i) $\frac{-4}{7}, \frac{5}{-7}$
 $\therefore \qquad -5 < -4$
 $\because \qquad -5 < -4$
 $\therefore \qquad -5 < -4$
 $\because \qquad -5 < -4$
 $\because \qquad -5 < -4$
 $\therefore \qquad -5 < -4 <-5$
 $= -16, 3 $\times 5 = -16$
 $= -16, 5, 15$$

5. Operations on Rational Numbers

Exercise 5.1
1. (i)
$$\frac{7}{13} + \frac{(-6)}{13}$$

 $\frac{7-6}{13} = \frac{1}{13}$
(ii) $\frac{10}{7}$, (iii) $\frac{-5}{17}$
(iv) $\frac{-23}{28} + \frac{5}{-28} = \frac{-23}{28} + \frac{-5}{28}$
 $= \frac{-23 + (-5)}{28} = \frac{-23 - 5}{28} = \frac{-28}{28} = -1$
2. (i) $\frac{-6}{8} + \frac{2}{3}$
The LCM of 8 and 3 is 24.
 $= \frac{-6 \times 3 + -8 \times 2}{78} = \frac{-18 + 16}{24} = \frac{-2}{24} = \frac{-1}{12}$
(ii) $-\frac{1}{36}$, (iii) $-\frac{26}{57}$
(iv) $\frac{-7}{26} + \frac{-11}{39}$
The LCM of 26 and 39 is 78.
 $= \frac{(-7) \times 3 + (-11) \times 2}{78} = \frac{-21 + (-22)}{78}$
 $= \frac{-21 - 22}{78} = \frac{-43}{78}$
3. (i) $\frac{4}{11} + \frac{-5}{8} = \frac{-5}{8} + \frac{4}{11}$
 $\frac{32 - 55}{88} = \frac{-55 + 32}{88} = \frac{-23}{88} = \frac{-23}{88}$
LHS = RHS
(ii), (iii), (iv) Do it yourself.
4. (i) $\frac{-3}{4} + \left(\frac{2}{5} + \frac{-4}{7}\right) = \left(\frac{-3}{4} + \frac{2}{5}\right) + \frac{-4}{7}$
 $\frac{-3}{4} - \frac{6}{35} = \frac{-7}{20} - \frac{4}{7}$
(14)

 $\frac{-105 - 24}{140} = \frac{-49 - 80}{140}$ $\frac{-129}{140} = \frac{-129}{140}$ LHS = RHS(ii), (iii), (iv) Do it yourself. **5.** (i) $\frac{2}{5} + \frac{8}{3} + \frac{-11}{15} + \frac{4}{5} + \frac{-2}{3}$ LCM of 3, 5 and 15 is 15. $=\frac{2\times3+8\times5+(-11)+4\times3+(-2)\times5}{15}$ $=\frac{6+40-11+12-10}{15}=\frac{37}{15}$ (ii) $\frac{-86}{63}$ **6.** (i) The additive inverse of $=\frac{1}{4}$ is $\frac{-1}{4}$. (ii) The additive inverse of $\frac{-3}{4}$ is $\frac{3}{4}$. (iii) The additive inverse of $\frac{-7}{-9}$ is $\frac{-7}{9}$. (iv) The additive inverse of $\frac{16}{-15}$ is $\frac{16}{15}$. **7.** (i) $0 + \frac{9}{11} = \frac{9}{11}$ (ii) $\frac{16}{17}$ (iii) $\frac{2}{5}$ (iv) $-\frac{12}{5}$ **Exercise 5.2**

1. (i) F (ii) T (iii) T (iv) T
2. (i)
$$\frac{13}{15} - \frac{12}{25}$$

LCM of 15 and 25 is 75.
 $= \frac{13 \times 5 - 12 \times 3}{75} = \frac{65 - 36}{75} = \frac{29}{75}$
(ii) $\frac{-17}{72}$ (iii) $\frac{29}{63}$
(iv) $\frac{-6}{13} - \frac{-7}{15} = \frac{-6}{13} + \frac{7}{15}$
The LCM of 13 and 15 is 195.
 $= \frac{(-6) \times 15 + 7 \times 13}{195} = \frac{-90 + 91}{195} = \frac{1}{195}$
(15)

3. (i) $\frac{7}{8} - \frac{5}{8} = \frac{7-5}{8} = \frac{2}{8} = \frac{1}{4}$ $\frac{5}{8} - \frac{7}{8} = \frac{5 - 7}{8} = \frac{-2}{8} = \frac{-1}{4}$ $\frac{1}{4} \neq -\frac{1}{4}$ (ii) $\frac{3}{0} \neq \frac{-3}{0}$ (iii) $\frac{8}{33} - \frac{5}{22}$ The LCM of 22 and 33 is 66. $=\frac{8\times2-5\times3}{66}=\frac{16-15}{66}=\frac{1}{66}$ $\frac{5}{22} - \frac{8}{33} = \frac{15 - 16}{66} = \frac{-1}{66}$ $\frac{1}{66} \neq -\frac{1}{66}$ \Rightarrow **4.** Let the other number be *x*. $x + \frac{-15}{7} = -8$ $x - \frac{15}{7} = -8 \implies x = -8 + \frac{15}{7}$ $x = \frac{-56 + 15}{7} = \frac{-41}{7}$ 5. Suppose we add $\frac{a}{b}$ to $\frac{-7}{8}$ to make it $\frac{5}{9}$ $\frac{a}{b} + \frac{-7}{8} = \frac{5}{9}$ $\frac{a}{b} = \frac{5}{9} + \frac{7}{8} = \frac{40 + 63}{72} = \frac{103}{72}$ 6. Suppose we subtract $\frac{a}{b}$ from $\frac{26}{33}$ to make it $\frac{-5}{11}$ $\frac{26}{33} - \frac{a}{b} = \frac{-5}{11}$ $\frac{26}{33} + \frac{5}{11} = \frac{a}{b}$ $\frac{26+5\times3}{33} = \frac{a}{b}$ $\frac{a}{b} = \frac{26 + 15}{33} = \frac{41}{33}$ \Rightarrow 16

7. (i)
$$\left(\frac{-8}{9} - \frac{11}{4}\right) - \frac{-4}{12}, \frac{-8}{9} - \left(\frac{11}{4} - \frac{-4}{12}\right)$$

LHS = $\left(\frac{-8 \times 4 - 11 \times 9}{36}\right) + \frac{4}{12} = \frac{-32 - 99}{36} + \frac{4}{12}$
 $= \frac{-32 - 99 + 12}{36} = \frac{-119}{36}$
RHS = $\frac{-8}{9} - \left(\frac{11}{4} - \frac{-4}{12}\right) = \frac{-8}{9} - \left(\frac{11}{4} + \frac{4}{12}\right)$
 $= \frac{-8}{9} - \left(\frac{11 \times 3 + 4 \times 1}{12}\right) = \frac{-8}{9} - \left(\frac{33 + 4}{12}\right)$
 $= \frac{-8}{9} - \frac{37}{12} = \frac{-8 \times 4 - 37 \times 3}{36} = \frac{-32 - 111}{36} = \frac{-143}{36}$
Thus, LHS \neq RHS
(ii) $\frac{67}{63} \neq \frac{76}{63}$
8. (i) $\frac{-2}{3} + \frac{5}{9} - \frac{-7}{6} = \frac{-2}{3} + \frac{5}{9} + \frac{7}{6}$
The LCM of 3, 6 and 9 is 18.
 $= \frac{-2 \times 6 + 5 \times 2 + 7 \times 3}{18} = \frac{-12 + 10 + 21}{18}$
 $= \frac{31 - 12}{18} = \frac{19}{18}$
(ii) $\frac{41}{72}$, (iii) $-\frac{1}{10}$, (iv) $\frac{-35}{72}$
9. (i) $\frac{-4}{13} - \frac{-3}{26} = \frac{-4}{13} + \frac{3}{26} = \frac{(-4) \times 2 + 3 \times 1}{26} = \frac{-8 + 3}{26} = \frac{-5}{26}$
(ii) $\frac{-5}{14} + x = -1$
 $\frac{-5}{14} + 1 = -x + \frac{5}{14} - 1 = x + x = \frac{5 - 14}{14} = \frac{-9}{14}$
(iii) $\frac{-7}{9} + x = 3$
 $x = 3 + \frac{7}{9} + x = \frac{27 + 7}{9} = \frac{34}{9}$
(iv) $x + \frac{15}{23} = 4$
 $x = 4 - \frac{15}{23} + x = \frac{4 \times 23 - 15}{23} = \frac{92 - 15}{23} = \frac{77}{23}$

Exercise 5.3

1. (i)
$$\frac{3}{11}$$
 by $\frac{2}{5} \Rightarrow \frac{3}{11} \times \frac{2}{5} = \frac{6}{55}$
(ii) $\frac{-6}{35}$, (iii) 12
(iv) $\frac{25}{-9}$ by $\frac{3}{-10}$
 $\frac{25}{-9} \times \frac{3}{-10} = \frac{75}{95} = \frac{5}{6}$
(v) $-\frac{24}{13}$
(vi) $\left(\frac{9}{-11}\right)$ by $\frac{22}{-27} = \frac{9}{-11} \times \frac{22}{-27} = \frac{9}{11} \times \frac{22}{27} = \frac{2}{3}$
(vii) $\frac{1}{10}$, (viii) 48.
2. (i) $\frac{3}{20} \times \frac{4}{5} = \frac{3}{25}$ (ii) $\frac{-1}{12}$
(iii) $\frac{-9}{8} \times \frac{-16}{3} = \frac{9}{8} \times \frac{16}{3} = 3 \times 2 = 6$
(iv) 2
3. (i) $\frac{4}{15} \times \frac{9}{5} \times \frac{50}{3} = 4 \times 2 = 8$
(ii) $-\frac{1}{6}$
(iii) $\left(\frac{-3}{2} \times \frac{4}{5}\right) + \left(\frac{9}{5} \times \frac{-10}{3}\right) - \left(\frac{1}{2} \times \frac{3}{4}\right) = \frac{-6}{5} + \frac{(-6)}{1} - \frac{3}{8}$
 $= -\left(\frac{48 + 240 + 15}{40}\right) = -\frac{-303}{40} = -7\frac{23}{40}$
4. $\left(\frac{2}{9} + \frac{-3}{11}\right) \times \left(\frac{5}{2} + \frac{7}{8}\right) = \left(\frac{22 - 27}{99}\right) \times \left(\frac{20 + 70}{8}\right) = \frac{-5 \times 27}{-99 \times 8} = \frac{-15}{88}$
5. $\left(-\frac{3}{2} - \frac{4}{15}\right) \times \left(\frac{3}{4} - \frac{7}{12}\right) = \left(-\frac{-3 \times 15 - 4 \times 2}{30}\right) \times \left(\frac{9 - 7}{12}\right)$
 $= \left(-\frac{45 - 8}{30}\right) \times \left(\frac{2}{12}\right) = -\frac{53}{30} \times \frac{2}{12} = -\frac{53}{180}$

6. (i)
$$\left(\frac{12}{8} \times \frac{16}{10}\right) + \left(\frac{-3}{9} \times \frac{18}{-16}\right) = \frac{12}{5} + \frac{3}{8} = \frac{12 \times 8 + 3 \times 5}{40}$$

 $= \frac{96 + 15}{40} = \frac{111}{40}$
(ii) $\frac{-104}{15}$
(iii) $\left(\frac{-4}{15} \times \frac{-5}{-8}\right) - \left(\frac{3}{5} \times \frac{6}{-15}\right) + \left(\frac{5}{-8} \times \frac{16}{15}\right)$
 $= \frac{-1}{6} + \frac{6}{25} - \frac{2}{3} = -\left(\frac{1}{6} + \frac{2}{3}\right) + \frac{6}{25}$
 $= -\left(\frac{1}{6} + \frac{2}{3}\right) + \frac{6}{25} = -\left(\frac{1+4}{6}\right) + \frac{6}{25}\right)$
 $= \frac{-5}{6} + \frac{6}{25} = \frac{-125 + 36}{150} = \frac{-89}{150}$
(iv) $\frac{17}{20}$
7. Cost of $3\frac{5}{7}$ L milk = $3\frac{5}{7} \times 16\frac{1}{2} = \frac{26}{7} \times \frac{33}{2} = \frac{13 \times 33}{7} = ₹ 61\frac{2}{7}$
8. Speed = $\frac{\text{Distance}}{\text{Time}}$
 $= \frac{65\frac{1}{3} = \frac{x}{6\frac{1}{2}}}{\frac{196}{3} = \frac{2x}{13}}$
 $\Rightarrow \frac{196}{3} = \frac{x}{\frac{13}{2}} \Rightarrow \frac{196}{3} = \frac{2x}{13}$
 $x = 424\frac{2}{3}$ km

Exercise 5.4

1. (i) T (ii) F (iii) T (iv) T (v) T (vi) F (vii) T (viii) F

2. Verify the property

(i)
$$x = \frac{-1}{5}, y = \frac{2}{7}$$

 $\frac{-1}{5} \times \frac{2}{7} = \frac{2}{7} \times \frac{-1}{5}$
 $\frac{-2}{35} = \frac{-2}{35}$

(ii), (iii), (iv) Do it yourself.

3. Verify the property

$$a \times (b \times c) = (a \times b) \times c$$

(i) $a = \frac{1}{3}, b = \frac{-2}{3}, c = \frac{4}{3}$
 $\frac{1}{3} \times \left(\frac{-2}{3} \times \frac{4}{3}\right) = \left(\frac{1}{3} \times \frac{-2}{3}\right) \times \frac{4}{3}$
 $\frac{1}{3} \times \frac{-2}{3} \times \frac{4}{3} = \frac{1}{3} \times \frac{-2}{3} \times \frac{4}{3} \quad \frac{-8}{27} = \frac{-8}{27}$

(ii), (iii), (iv) Do it yourself.

$$a \times (b + c) = (a \times b) + (a \times c)$$
(i) $a = \frac{5}{6}, b = \frac{-3}{4}, c = \frac{7}{8}$

$$\frac{5}{6} \times \left(\frac{-3}{4} + \frac{7}{8}\right) = \left(\frac{5}{6} \times \frac{-3}{4}\right) + \left(\frac{5}{6} \times \frac{7}{8}\right)$$

$$\frac{5}{6} \times \left(\frac{-6 + 7}{8}\right) = \left(\frac{-5}{8}\right) + \frac{35}{48}$$

$$\frac{5}{6} \times \frac{1}{8} = \frac{-5}{8} + \frac{35}{48}$$

$$\frac{5}{48} = \frac{35 - 30}{48} \implies \frac{5}{48} = \frac{5}{48}$$

(ii) Do it yourself.

5.
$$x \times (y - z) = x \times y - x \times z$$

(i) $x = \frac{1}{2}, y = \frac{3}{4}, z = \frac{-4}{5}$
 $\frac{1}{2} \times \left(\frac{3}{4} - \frac{-4}{5}\right) = \frac{1}{2} \times \frac{3}{4} - \frac{1}{2} \times \left(\frac{-4}{5}\right)$
 $\frac{1}{2} \times \left(\frac{15 + 16}{20}\right) = \frac{3}{8} + \frac{4}{10}$
 $\frac{31}{40} = \frac{15 + 16}{40}$ $\frac{31}{40} = \frac{31}{40}$
(ii) Do it yourself.
6. (i) Multiplicative inverse of 15 is $\frac{1}{2}$

6. (i) Multiplicative inverse of 15 is
$$\frac{1}{15}$$
.
(ii) Multiplicative inverse of -16 is $\frac{1}{-16}$.
(iii) Multiplicative inverse of $\frac{5}{6}$ is $\frac{6}{5}$.
(iv) Multiplicative inverse of $\frac{3}{7} \times \frac{4}{9}$ is $\frac{21}{4}$.

7. (i)
$$\left(\frac{1}{-4}\right)^{-1} = -4$$
 (ii) $\left(\frac{-4}{6} \times \frac{3}{5}\right)^{-1} = \left(\frac{-2}{5}\right)^{-1} = \frac{5}{-2}$ (iii) $\left(\frac{-7}{3}\right)^{-1} = \frac{3}{-7}$

Exercise 5.5

1. (i) F (ii) F (iii) F (iv) T (v) T
2. (i)
$$\frac{-4}{6} \div \frac{3}{2} = \frac{-4}{6} \times \frac{2}{3} = \frac{-4}{9}$$
 (ii) $\frac{16}{-15}$
(iii) $\frac{-15}{7} \div \frac{-30}{1} = \frac{-15}{7} \times \frac{1}{-30} = \frac{1}{14}$
(iv) $-25 \div \left(\frac{-5}{6}\right) = \frac{-25}{1} \times \frac{6}{-5} = 30$
(v) $\frac{4}{3}$
(vi) $\left(\frac{-16}{35}\right) \div \left(\frac{-15}{14}\right) = \frac{-16}{35} \times \frac{14}{-15} = \frac{16 \times 14}{35 \times 15} = \frac{32}{75}$
(vii) $\frac{21}{10}$
(viii) $\left(\frac{-7}{12}\right) \div \left(\frac{-2}{3}\right) = \frac{-7}{12} \times \frac{3}{-2} = \frac{7}{8}$

$$\frac{4}{15} \times x = \frac{-8}{9} \\ x = \frac{-8}{9} \times \frac{15}{-4} \quad x = \frac{10}{3}$$

4.
$$x \times \frac{-15}{28} = \frac{-5}{7}$$

 $x = \frac{-5}{7} \times \frac{28}{-15}$ $x = \frac{4}{3}$

5. Verify that
$$(x \div y) \times z \neq x \div (y \times z)$$

Taking
$$x = \frac{8}{15}, y = \frac{2}{3}, z = \frac{4}{10}$$

$$\left(\frac{8}{15} \div \frac{2}{3}\right) \times \frac{4}{10} \neq \frac{8}{15} \div \left(\frac{2}{3} \times \frac{4}{10}\right)$$

$$\left(\frac{8}{15} \times \frac{3}{2}\right) \times \frac{4}{10} \neq \frac{8}{15} \div \frac{4}{15}$$

$$\frac{8}{25} \neq 2$$

$$(21)$$

6. (i) $\frac{13}{5} \div \frac{26}{15} = \frac{26}{15} \div \frac{13}{5}$ $\frac{13}{5} \times \frac{15}{26} = \frac{26}{15} \times \frac{5}{13}$ $\frac{3}{2} \neq \frac{2}{3}$ (ii), (iii) Do it yourself $(iv)\left(\frac{-6}{15}\right) \div \left(\frac{7}{30}\right) = \left(\frac{7}{30}\right) \div \left(\frac{-6}{15}\right)$ $-\frac{6}{15} \times \frac{30}{7} = \frac{7}{30} \times \frac{15}{-6}$ $\frac{-12}{7} \neq \frac{7}{-12}$ **7.** Sum = $\frac{65}{13} + \frac{5}{7}$ Subtract = $\frac{65}{13} - \frac{5}{7}$ $=5+\frac{5}{7}$ $=5-\frac{5}{7}$ $=\frac{35-5}{7}=\frac{30}{7}$ $=\frac{40}{7}$ Divide $=\frac{40}{7} \div \frac{30}{7} = \frac{40}{7} \times \frac{7}{30} = \frac{4}{3}$ Product = $\frac{-29}{7} \times \frac{1}{-2} = \frac{29}{4}$ 8. Sum = $\frac{13}{5} + \frac{-6}{15}$ $=\frac{13}{5}-\frac{6}{15}=\frac{13}{5}-\frac{2}{5}$ Divide = $\frac{11}{5} \div \frac{29}{14}$ $=\frac{11}{5}$ $=\frac{11}{5}\times\frac{14}{20}=\frac{154}{145}$ 9. $\frac{-35}{6} \div x = \frac{-15}{2}$ $\frac{35}{6} \times \frac{1}{r} = \frac{15}{2}$ $x = \frac{35 \times 2}{6 \times 15}$ $x = \frac{7}{9}$ **10.** Cost of per meter cloth $=\frac{65\frac{1}{2}}{3\frac{2}{5}}=\frac{\frac{131}{2}}{\frac{17}{5}}=\frac{131}{2}\times\frac{5}{17}$ = $\frac{655}{34}$ = ₹ **19** $\frac{9}{34}$ **11.** Length of cloth required for each pair = $\frac{60}{25}$ = **2.4 metre.**

22

12. (i)
$$\frac{9}{8} \div x = \frac{6}{5}$$

 $\frac{9}{8} \times \frac{1}{x} = \frac{6}{5}$
 $8 \times 6 \times x = 9 \times 5$ $x = \frac{9 \times 5}{6 \times 8} = \frac{15}{16}$
(ii) $\frac{-3}{7}$, (iii) $\frac{5}{2}$
(iv) (-15) $\div x = \frac{-6}{5}$
 $-15 \times \frac{1}{x} = \frac{-6}{5}$
 $-6 \times x = 5x - 15$ $x = \frac{5 \times 15}{6}$ $x = \frac{25}{2}$
13. Verify $(x \times y)^{-1} = x^{-1} \times y^{-1}$
(i) $x = \frac{11}{23}, y = \frac{-17}{5}$
 $\left(\frac{11}{23} \times \frac{-17}{5}\right)^{-1} = \left(\frac{11}{23}\right)^{-1} \times \left(\frac{-17}{5}\right)^{-1}$
 $\frac{23}{11} \times \frac{5}{-17} = \frac{23}{11} \times \frac{5}{-17}$

(ii) Do it yourself.

Exercise 5.6

1. (i) T (ii) T (iii) T (iv) T (v) F (vi) T (vii) T (viii) F (ix) F (x) F 2. The rational number between -5 and $4 = \frac{-5-4}{2} = \frac{-9}{2}$ 3. The rational number between -7 and $-6 = \frac{-7-6}{2} = \frac{-13}{2}$ Now a rational number between $\frac{-13}{2}$ and -6. $\frac{1}{2} \left\{ \frac{-13}{2} - 6 \right\} = \frac{1}{2} \left\{ \frac{-25}{2} \right\} = \frac{-25}{4}$ A rational number between $\frac{-13}{2}$ and -7. $\frac{1}{2} \left\{ \frac{-13}{2} - 7 \right\} = \frac{1}{2} \left\{ \frac{-27}{2} \right\} = \frac{-27}{4}$ The desired rational numbers are $\frac{-27}{4}, \frac{-13}{2}, \frac{-25}{4}$.

- 4. The rational number between -1 and $1 = \frac{-1+1}{2} = \frac{0}{2} = 0$ Now a rational number between -1 and 0. $= \frac{1}{2} \{-1+0\} = \frac{-1}{2}$ $-1 < \frac{-1}{2} < 0 < 1$
- A rational number between 0 and $1 = \frac{0+1}{2} = \frac{1}{2}$ $-1 < -\frac{1}{2} < 0 < \frac{1}{2} < 1$ A rational number between $\frac{1}{2}$ and $0 = \frac{\frac{1}{2} + 0}{2} = \frac{1}{2}$ $-1 < -\frac{1}{2} < 0 < \frac{1}{4} < \frac{1}{2} < 1$ A rational number between 0 and $-\frac{1}{2} = \frac{0 - \frac{1}{2}}{2} = \frac{-1}{1}$ $-1 < \frac{-1}{2} < \frac{-1}{4} < 0 < \frac{1}{4} < \frac{1}{2} < 1$ The desired rational numbers are $\frac{-1}{2}$, $\frac{-1}{4}$, 0, $\frac{1}{4}$, $\frac{1}{2}$. 5. 4 rational numbers between $\frac{3}{4}$ and $\frac{2}{3}$, firstly equating the denominator of both, we get $\frac{9}{12}$ and $\frac{8}{12}$ $\frac{8}{12} < \frac{9}{12}$, the rational number could be $\frac{8+9}{12\times 2} = \frac{17}{24}$, equating denominator of both, we get $\frac{16}{24} < \frac{17}{24} < \frac{18}{24}$ other is $\frac{17+18}{24\times 2} = \frac{35}{48}$ another is $\frac{16+17}{24\times 2} = \frac{33}{48}$ another is $\frac{33+34}{48\times 2} = \frac{67}{96}$ The desired four rational numbers are $\frac{17}{24}$, $\frac{35}{48}$, $\frac{33}{48}$ and $\frac{23}{32}$.

6.

Exponents and Powers

Exercise 6.1

1. (i) T (ii) T (iii) T (iv) F (v) T (vi) F

$$(iv) \left(\frac{3}{7}\right)^{3} \times \left(\frac{7}{3}\right)^{5} = \left(\frac{3}{7}\right)^{3} \times \left(\frac{3}{7}\right)^{-5} = \left(\frac{3}{7}\right)^{-2} \times \left(\frac{7}{3}\right)^{2} = \frac{49}{9}$$

Reciprocal = $\frac{9}{49}$
7. (i) $2^{3} \times 2^{4} = 2^{x}$
 $2^{3+4} = 2^{x}$
 $2^{7} = 2^{x}$ $x = 7$
(ii) 11, (iii) 11
(iv) $(-4)^{9} \div (-4)^{3} = (-4)^{x}$
 $(-4)^{9-3} = (-4)^{x}$
 $(-4)^{6} = (-4)^{x}$ $x = 6$
(v) $\frac{8^{13}}{8^{19}} = \frac{1}{8^{x}}$
By cross multiplication, we get.
 $8^{13+x} = 8^{19}$
 \Rightarrow 13 + x = 19 [Comparing]
 \Rightarrow x = 19 - 13 = 6
(vi) $(-4)^{11} \div (-4)^{15} = \frac{1}{(-4)^{x}}$
 $(-4)^{11-15} = \frac{1}{(-4)^{x}} \Rightarrow (-4)^{-4} = \frac{1}{(-4)^{x}}$
 \Rightarrow $\frac{1}{(-4)^{4}} = \frac{1}{(-4)^{x}} \Rightarrow x = 4$

Exercise 6.2

- **1.** (i) $3.27 \times 10^{6} = 3270000$ (ii) 0.00465, (iii) 749000 (iv) $3.127 \times 10^{-7} = 0.000003127$ (v) 43500
- 2. (i) $476000 = 4.76 \times 10^{5}$ (ii) $8460 \times 10^{3} = 8.46 \times 10^{6}$ (iii) $0.00025 = 2.5 \times 10^{4}$ (iv) $\frac{4}{100000} = \frac{4}{10^{5}} = 4 \times 10^{-5}$ (v) $3246 = 3.246 \times 10^{3}$

3. (i) $6.5 \times 10^{-6} = 0.0000065$ (ii) $5.6146929 \times 10^7 = 56146929$ (iv) 5800000000, (v) 10010000004. (i) $9800000, n = 8 = 9.8 \times 10^8$ (ii) $9.7 \times 10^{-11}, (iii) 55 \times 10^{-14}$ (iv) $107000000, n = 9 = 10.7 \times 10^9$ 5. (i) $1050000 = 1.05 \times 10^6$ (ii) $135300000 = 1.361 \times 10^9$ $136100000 = 1.361 \times 10^9$ (iii) $102700000 = 1.027 \times 10^9$ $531200000 = 5.312 \times 10^8$ $495800000 = 4.958 \times 10^8$ (iv) $\frac{1}{1000000} = \frac{1}{10^6} = 1 \times 10^{-6}$

Unit-II : Algebra

7.

Algebraic Expressions

Exercise 7.1

- **1.** (i) 3 (ii) $\frac{-7}{2}$ (iii) 5 (iv) -1
- **2.** (i) x^2 (ii) x (iii) xy^2 (iv) xyz (v) x^4

3. (i)
$$\frac{3}{5}$$
 (ii) -7 (iii) $\frac{1}{2}$ (iv) 1

- 4. (i) binomial (ii) trinomial (iii) monomial (iv) trinomial (v) binomial
- (i) -2x², x², 3x², -15x² (ii) -5ab, ab, -ab, 2ab
 (iii) mn, -mn, 2mn, -2mn (iv) xy², -xy², 2xy², -2xy²
 (v) px, -px, 2px, -2px.

Exercise 7.2

1. (i) $7x \times 5x^2 = 35x^3$ (ii) $-5x^3 \times 7x^2 = -35x^5$ (iii) $20x \times (-25x^2y) = -500x^3y$

(iv)
$$2a^{2}bc \times 4ab^{2} = 8a^{3}b^{3}c$$

(v) $\frac{5}{7} \times x^{3} \times \frac{-28}{45}x^{4} = \frac{-4}{9}x^{7}$
(vi) $\frac{-8}{5}a^{3}b \times \frac{15}{6}abc^{2} = \frac{-3}{2}a^{4}b^{2}c^{2}$
(vii) $12x^{3}y^{2}z$
(viii) $\left(-\frac{1}{27}a^{2}b^{2}\right) \times \left(-\frac{9}{2}a^{3}b^{2}c^{2}\right) = \frac{1}{6}a^{5}b^{4}c^{2}$
(ix) $3.2x^{6}y^{3} \times 5x^{2}y^{2} = \frac{32}{10}x^{6}y^{3} \times 5x^{2}y^{2} = 16x^{8}y^{5}$
(x) $x^{-6} \times x^{7} \times (-2x) = -2x^{-6+7+1} = -2x^{2}$
(xi) $(-2x^{2}) \times (7x^{2}) \times (6x^{3}) = -84x^{7}$
Put $x = 1$ in both sides
 $(-2 \times 1^{2})(7 \times 1^{2})(6 \times 1^{3}) = -84 \times 1$
 $-84 = -84$ Hence proved.
(xii) $2ab \times (-5a^{2}) \times (-4.4a^{2}b) = 44a^{2+1+2}b^{1+1} = 44a^{5}b^{2}$
When $a = -1, b = 2$
 $= 44 \times (-1)^{5} \times (2)^{2} = 44 \times 4 = -176$
(xiii) $a = 1, b = 2$
 $= (5a^{6})(-10ab^{2})(-2a^{2}b^{3})$
 $= 100a^{6+2+1}b^{2+3} = 100a^{2}b^{5}$
 $= 100 \times (1)^{9} \times (2)^{5}$
 $= 100 \times (1)^{9} \times (2)^{5}$
 $= 100 \times 1 \times 32 = 3200$
2. (i) $a^{7} \times a^{10} \times a^{-3} = a^{7+10+3} = a^{7+7} = a^{14}$
(ii) $x^{-5} \times (-2x^{3}) \times 7x^{5} = -14x^{-5+3+5} = -14x^{3}$
Exercise 7.3
1. (i) $5a(a^{2} + a + 3) = 5a \times a^{2} + 5a \times a + 5a \times 3$
 $= 5a^{3} + 5a^{2} + 15a$
(ii) $x^{7} + 7x^{6} + 9x^{5}$
(iii) $0.1a(0.01a + 0.0016) = \frac{1}{10}a\left(\frac{a}{100} + \frac{16}{10000}\right)$
 $= \frac{a^{2}}{1000} + \frac{16a}{100000}$

2. (i) $(3x + 5) \times 7x = 3x \times 7x + 5 \times 7x$ = **21x²** + **35x**

(ii) $2x^2y - xy^2$, (iii) $5m^2 - 10m$ (iv) $(5x^2 + 7x) \times 5x^2 = 25x^4 + 35x^3$ $(v)\left(\frac{1}{2}x - \frac{1}{2}y\right) \times 6xy = \frac{1}{2} \times 6x^2y - \frac{6}{2}xy^2$ $= 3x^2y - 2xy^2$ (vi) $(0.2a - 0.1b) \times 0.3b = 0.2a \times 0.3b - 0.1b \times 0.3ab$ $= 0.06a^2b - 0.03ab^2$ **3.** (i) $(2x + 9) \times (6x + 5) = 2x \times 6x + 6x \times 9 + 5 \times 2x + 5 \times 9$ $=12x^{2} + 54x + 10x + 45$ $= 12x^2 + 64x + 45$ (ii) $3x^2 - 17x - 56$, (iii) $6p^2a^2 + 13pa^3 + 6a^4$ (iv) $(2.5a + 2.3b) \times (2.5a - 2.3b) = (2.5a)^2 - (2.3b)^2$ $=6.25a^2 - 5.29b^2$ **4.** (i) $a(a-b) + b(a-b) = a^2 - ab + ab - b^2 = a^2 - b^2$ (ii) (a+b)(2a-b)(iii) $a(a^{2} + 1) + b(b^{2} + 1) - (a + b) = a^{3} + a + b^{3} + b - a - b$ $=a^{3}+b^{3}$ (iv) -3p(p+17)**5.** (i) $(2x-5) \times (7+4x) = 2x \times 7 - 5 \times 7 + 2x \times 4x - 5 \times 4x$ $=14x - 35 + 8x^2 - 20x$ $=8x^2 - 6x - 35$ $(x = 2) = 8(2)^2 - 6(2) - 35$ If $= 8 \times 4 - 12 - 35 = 32 - 12 - 35 = -15$ (ii) $7x^2 + 6xy - y^2$, (iii) $a^2b^2 + a^3 + b^3 + ab$ (iv) $(p^2 - q^2)(p - q)^2 = p^3 - pq^2 - p^2q + q^3$ If p = 2, $q = 0 = (2)^3 - (2) \times 0 - (2)^2 \times 0 + 0 = 8$ 6. (i) $(2x + 3y)(4x^2y + 5xy^2)$ $=8x^{3}y + 12x^{2}y^{2} + 10x^{2}y^{2} + 15xy^{3}$ $=8x^{3}v + 22x^{2}v^{2} + 15xv^{3}$ (ii) $(a^{5} + 5)(b^{3} + 3) + 4 = a^{2}b^{3} + 5b^{3} + 3a^{5} + 15 + 4$ $=a^{5}b^{3}+5b^{3}+3a^{5}+19$ (iii) $(a + bcd)(a^3 + b^3c^3d^3)$ $=a^{4} + ab^{3}c^{3}d^{3} + a^{3}bcd + b^{4}c^{4}d^{4}$ 29

(iv)
$$(t^{2} + s^{2})(t^{2} - s^{2})$$
 is of the form $(a + b)(a - b) = a^{2} - b^{2}$
 $= (t^{2})^{2} - (s^{3})^{2} = t^{4} - s^{6}$
7. (i) $-x^{2}yz(xy^{2}z - x^{2}z) = -x^{3}y^{3}z^{2} + x^{4}yz^{2}$
 If $x = -1, y = 1, z = 2$
 $= -(-1)^{3}(1)^{3}(2)^{2} + (-1)^{4}(1)(2)^{2}$
 $= 1 \cdot 1 \cdot 4 + 1 \cdot 1 \cdot 4 = 4 + 4 = 8$
 (ii) -244
8. (i) $(1.5x - 4y)(1.5x + 4y + 3)$
 $= 1.5x \times (1.5x + 4y + 3) - 4y(1.5x + 4y + 3)$
 $= 2.25x^{2} + 6xy + 4.5x - 6xy - 16y^{2} - 12y$
 $= 2.25x^{2} - 16y^{2} + 4.5x - 12y$
 (ii) $m^{2}p^{2} - m^{2}n^{2} - n^{4} + p^{4}$
9. (i) $(3x + 4)(2x - 3) + (5x - 4)(x + 2)$
 $= 3x(2x - 3) + 4(2x - 3) + 5x(x + 2) - 4(x + 2)$
 $= 6x^{2} - 9x + 8x - 12 + 5x^{2} + 10x - 4x - 8$
 $= 11x^{2} + 5x - 20$
 (ii) $8x^{2} - 10y^{2}$
 (iii) $(x^{2} - 5x + 6)(2x - 3) - (3x^{2} + 4x - 5)(x - 2)$
 $= 2x(x^{2} - 5x + 6) - 3(x^{2} - 5x + 6) - x(3x^{2} + 4x - 5)$
 $+ 2(3x^{2} + 4x - 5)$
 $= 2x^{3} - 10x^{2} + 12x - 3x^{2} + 15x - 18 - 3x^{3} - 4x^{2}$
 $+ 5x + 6x^{2} + 8x - 10$
 $= (2x^{3} - 3x^{3}) + (-10x^{2} - 3x^{2} - 4x^{2} + 6x^{2})$
 $+ (12x + 15x + 5x + 8x) - 18 - 10$
 $= -x^{3} - 11x^{2} + 40x - 28$
10. (i) $(x + 2y) \times (2x - 9y + 7)$
 $= 2x^{2} - 9xy + 7x + 4xy - 18y^{2} + 14y$
 $= 2x^{2} - 18y^{2} - 5xy + 7x + 14y$
 (ii) $\frac{3}{2}x^{2} - \frac{163}{8}xy + 16x - 4y + 5y^{2}$
 (iii) $x^{3} + x^{3}y + x^{2}y + xy^{2} + y^{3} + xy^{3}$
 (iv) $(a + b + c) \times (a^{3} - b^{3})$
 $= a^{4} - ab^{3} + a^{3}b - b^{4} + a^{3}c - cb^{3}$
11. (i) $(x + y)(x^{2} - xy + y^{2}) = x(x^{2} - xy + y^{2})$

$$= x^{3} - x^{2}y + xy^{2} + x^{2}y - xy^{2} + y^{3}$$

$$= x^{3} + y^{3}$$

(ii) $x^{2} + (3x - y)(3x + y + y^{2})$

$$= x^{2} + 9x^{2} + 3xy + 3xy^{2} - 3xy - y^{2} - y^{3}$$

$$= 10x^{2} - y^{2} - y^{3} + 3xy^{2}$$

(iii) $x(x + y^{2}) + z) + y^{2}(x + y + z) - z(z + y^{2})$

$$= x^{2} + xy^{2} + zx + xy^{2} + y^{3} + y^{2}z - zx - zy^{2}$$

$$= x^{2} + 2xy^{2} + y^{3}$$

Exercise 7.4

1. (i) 4x + 6Putting x = 3 in the given algebraic expression $4 \times 3 + 6 = 18$ (ii) 16 (iii) 1 (iv) 70 **2.** (i) $5a^3 + 2a^2 - 3$ Putting a = -2 in the given expression $5(-2)^3 + 2 \times (-2)^2 - 3$ $5 \times -8 + 2 \times 4 - 3$ -40 + 8 - 3 = -35(ii) 16 (iii) -48 (iv) -74 **3.** (i) –3 (ii) $a^2 + 4ab + b^2$ $m = 2, n = -1, a = 3 m = 3 \times 2 = 6$ $b = 5n = 5 \times -1 = -5$ Putting the value of *a* and *b* in the given expression, we get $6^{2} + 4 \times 6 \times -5 + (-5)^{2}$ = 36 - 120 + 25=61 - 120 = -59(iii) - 158, (iv) 3 **4.** $5y^2 + 6y - a = 8$ Putting y = 2 in the given algebraic expression, we get $5 \times 2^{2} + 6 \times 2 - a = 8$ $5 \times 4 + 12 - a = 8$ a = 20 + 12 - 8a = 24**5.** – 1

6. (i) $8a = 35^2 - 27^2$

$$8a = (35)^{2} - (27)^{2}$$

$$8a = (35 + 27)(35 - 27)$$

$$8a = 62 \times 8$$

$$a = \frac{62 \times 8}{8} = 62$$

(ii) 143

8. Linear Equations in One Variable

Exercise 8.1

1. $5x - 3 = 3x - 5$
$5x - 3x = -5 + 3 \implies 2x = -2$
$x = \frac{-2}{2} = -1$
2. $\frac{x}{5} + 1 = \frac{1}{15}$
$\frac{x}{5} = \frac{1}{15} - 1 \implies \frac{x}{5} = \frac{1 - 15}{15} \implies \frac{x}{5} = \frac{-14}{15} \implies x = \frac{-14}{3}$
3. $x = \frac{4}{5}$
4. $\frac{x-8}{3} = \frac{x-3}{5}$
$5(x-8)=3(x-3) \implies 5x-40=3x-9$
$5x - 3x = -9 + 40 \Rightarrow 2x = 31$
$x = \frac{31}{2}$
5. $m = \frac{7}{5}$
6. $x + 7 - \frac{16x}{3} = 12 - \frac{7x}{2}$
$x - \frac{16x}{3} + \frac{7x}{2} = 12 - 7$
$x\left(1 - \frac{16}{3} + \frac{7}{2}\right) = 5 \implies x\left[\frac{6 - 32 + 21}{6}\right] = 5$
$x\left(\frac{27-32}{6}\right) = 5 \implies x(-5) = 30$
x = -6
$\widehat{}$

32

7.
$$p = \frac{17}{9}$$

8. $\frac{3t-2}{3} + \frac{2t+3}{3} = t + \frac{7}{6}$
 $\frac{3t}{3} - \frac{2}{3} + \frac{2t}{3} + \frac{3}{3} = t + \frac{7}{6} \implies t - \frac{2}{3} + \frac{2t}{3} + 1 = t + \frac{7}{6}$
 $t + \frac{2t}{3} - t = \frac{7}{6} + \frac{2}{3} - 1 \implies t \left(1 + \frac{2}{3} - 1\right) = \frac{7+4-6}{6}$
 $\frac{2}{3}t = \frac{11-6}{6} \implies \frac{2}{3}t = \frac{5}{6}$
 $t = \frac{5}{8} \times \frac{3}{2} \implies t = \frac{5}{4}$
9. $3(x-3) = 5(2x+1) \implies 3x-9 = 10x+5$
 $7x + 14 = 0$
 $\implies x = -2$
10. $15(y-4) - 2(y-9) + 5(y+6) = 0$
 $15y - 60 - 2y + 18 + 5y + 30 = 0$
 $15y - 2y + 5y = 60 - 30 - 18$
 $y(15-2+5) = 60 - 48$
 $18y = 12 \implies y = \frac{12}{18}$
 $\implies y = \frac{2}{3}$

11. *x* = -96

12.
$$4(3w+2) - 5(6w-1) = 2(w-8) - 6(7w-4) + 4w$$

 $12w + 8 - 30w + 5 = 2w - 16 - 42w + 24 + 4w$
 $(12w - 30w - 2w + 42w - 4w) = -8 - 5 - 16 + 24$
 $w(12 + 42 - 30 - 2 - 4) = -5$
 $18w = -5 \implies w = \frac{-5}{12}$

$$18w = -5 \implies w = \frac{-3}{18}$$

13.
$$0.25(4y-3) = 0.5y - 9$$

 $\frac{25}{100}(4y-3) = \frac{5}{10}y - 9$
 $\frac{25 \times 4y}{100} - \frac{25 \times 3}{100} = \frac{5y}{10} - 9$
 $y - \frac{y}{2} = -9 + \frac{3}{4} \implies \frac{y}{2} = \frac{-36 + 3}{4}$
 $\frac{y}{2} = \frac{-33}{4} \implies y = \frac{-33}{2}$

14.
$$0.16(5x-2) = 0.4x + 7$$

 $0.16 \times 5x - 0.16 \times 2 = 0.4x + 7$
 $\frac{16 \times 5x}{100} - \frac{16 \times 2}{100} = \frac{4x}{10} + 7$
 $\frac{80x}{100} - \frac{4x}{10} = 7 + \frac{32}{100}$
 $x\left(\frac{8}{10} - \frac{4}{10}\right) = \frac{732}{100} \Rightarrow \frac{4x}{10} = \frac{732}{100}$
 $\Rightarrow 4x = \frac{732}{10} \Rightarrow x = \frac{183}{10}$
 $\Rightarrow x = 18.3$
15. $2.25(2z + 8) = 5z - 3$
 $4.50z + 18.00 = 5z - 3 \Rightarrow 18 + 3 = (5 - 4.5)z$
 $21 = 0.5z \Rightarrow \frac{21}{0.5} = z$
or
 $z = 42$
16. $x = 18$
17. $\frac{x}{2} - \frac{1}{4} = \frac{x}{3} + \frac{1}{2}$
 $\frac{x}{2} - \frac{x}{3} = \frac{1}{2} + \frac{1}{4} \Rightarrow \frac{3x - 2x}{6} = \frac{2 + 1}{4}$
 $\frac{x}{6} = \frac{3}{4} \Rightarrow x = \frac{3 \times 6}{4} = \frac{9}{2}$
18. $2x - 3(x + 1) = 5x - 7$
 $2x - 3x - 3 = 5x - 7 \Rightarrow 5x - 2x + 3x = -3 + 7$
 $6x = 4 \Rightarrow x = \frac{2}{3}$
19. $\frac{4z - 3}{4} - 3 = \frac{5z - 7}{3} - 4z - 1$
 $\frac{4z}{4} - \frac{3}{4} - 3 = \frac{5z}{3} - \frac{7}{3} - 4z - 1$
 $z - \frac{5}{3}z + 4z = \frac{3}{4} + 3 - \frac{7}{3} - 1$
 $\frac{3z - 5z + 12z}{3} = \frac{9 + 36 - 28 - 12}{12}$
 $\frac{10z}{3} = \frac{5}{12} \Rightarrow \frac{2z}{1} = \frac{1}{4}$
 $\Rightarrow z = \frac{1}{8}$
(34)

20.
$$18y + 3y - \frac{3}{5} = 21 + 5y - 2y$$

 $18y + 3y - 5y + 2y = 21 + \frac{3}{5}$
 $18y = \frac{108}{5} \implies y = \frac{108}{5 \times 18}$
 $\Rightarrow \qquad y = \frac{6}{5}$

Exercise 8.2

 \Rightarrow

 \Rightarrow

1. Let the one number be x and other 95 - x $x + 3 = 95 - x \rightarrow 2x$

$$+3 = 95 - x \implies 2x = 95 - 3$$
$$2x = 92 \implies x = \frac{92}{2} \quad x = 46$$

Therefore the number are **46** and **49**.

- 2. Let the number be x, x + 1 and x + 2 x + x + 1 + x + 2 = 24 $3x + 3 = 24 \implies 3x = 24 - 3$ $3x = 21 \implies x = 7$ Therefore the number are 7, 7 + 1, 7 + 2 = 7, 8 and 9.
- **3.** Let the number be *x*.

$$2x + 7 = 49 \implies 2x = 49 - 7$$
$$2x = 42 \implies x = \frac{42}{2}$$
$$x = 21$$

4. Let the number be *x*

$$3x - 22 = 68 \implies 3x = 68 + 22$$
$$3x = 90 \implies x = \frac{90}{3} \implies x = 30$$

5. Let the number be *x*

$$7x - 3 = 53 \implies 7x = 56$$
$$x = 8$$

6. Let *x* be the no. of 10 rupee note and *y* that of 50 rupee note. Given that, 10x + 50y = 250 ...(i) And x = y + 1 ...(ii) Putting the value of *x* from equation (ii) in equation (i). We get, 10y (y + 1) + 50y = 25010y + 10 + 50y = 250

$$10y + 10 + 50y = 250$$

$$60y = 240$$

$$y = \frac{240}{60} = 4$$

35

From equation (iii), x = y + 1, x = 4 + 1 = 5No. of 10 rupee note = 5, no. of 50 rupee note = 47. Let the breadth = xAnd Length =2x+2Perimeter of rectangle = $2 \times (l + b)$ $28 = 2 \times (x + 2x + 2)$ $14 = 3x + 2 \implies 3x = 12$ \Rightarrow \Rightarrow x = 4Breadth = 4 cm, Length = 10 cm **8.** Let Subramaniam's age = xMother's age = 6xAfter 5 years x + 5 + 20 = 6x + 5 $x + 25 = 6x + 5 \implies 25 - 5 = 6x - x$ $20=5x \implies x=4$ Subramaniam's age = 4 years and his mother's age = 24 years. **9.** Let breadth be *x* and length be x + 4Perimeter of the rectangle = $2 \times (\text{length} + \text{breadth})$ $84 = 2 \times (x + 4 + x)$ 42 = 2x + 442 - 4 = 2x $38 = 2x \implies x = 19$ \Rightarrow Breadth = 19 Length = 23 m **10.** Let the present age of Sheela be x. After 15 years $x + 15 = 4x \implies 3x = 15$ x = 5. Present age of Sheela is **5 years. 11.** Let the one prize = x, and other prize = (63 - x) $100x + (63 - x) \times 25 = 3000$ 100x + 1575 - 25x = 300075x = 1425 $x = \frac{1425}{75} = 19$ \Rightarrow 19,63 - 19 = 44No. of 100 rupee prizes = 19, No. of 25 rupee prizes = 44**12.** No. of 500 rupee prizes = 75, No of 100 rupee prizes = 125**13.** Let the total worth of Shanti Lal's property be *x* Son's share = $\frac{x}{5}$

Daughter's share
$$=\frac{x}{5}$$

Wife's share $=\frac{3x}{5}$
If wife's share $=288000$
 $288000 = \frac{3x}{5} \implies 3x = 288000 \times 5$
 $x = \frac{288000 \times 5}{3} = 480000$

₹ 480000 is total worth of Shanti Lal's property.

14. Let one part = x and other part x + 10 $\frac{x}{x+10} = \frac{3}{5} \implies 5x = 3x + 30$ $5x - 3x = 30 \implies 2x = 30$ $\Rightarrow \qquad x = 15$ The set of the set of

First part = 15 and other = 25Total number = 15 + 25 = 40

15. Let the number of boys = *x*, and the number of girls = $\frac{2x}{5}$

$$\frac{2x}{5} + x = 35 \implies \frac{2x + 5x}{5} = 35$$
$$\Rightarrow \qquad \frac{7x}{5} = 35 \implies x = \frac{35 \times 5}{7}$$
$$\Rightarrow \qquad x = 25$$

Boys = **25**

16. Let the distance covered by Sarita = x km The distance covered by Julie = (18 - x) km Speed = $\frac{\text{Distance}}{\text{Time}}$ $\frac{5}{2} = \frac{18 - x}{t} \implies t = \frac{36 - 2x}{5}$ And $2 = \frac{x}{t} \implies t = \frac{x}{2}$ According to the condition $\frac{36 - 2x}{5} = \frac{x}{2} \implies 72 - 4x = 5x$ $\implies x = 8$ $\implies t = \frac{8}{2} = 4$ hours (37) **17.** Let the number be *x*.

$$\begin{pmatrix} x - \frac{1}{2} \end{pmatrix} \times 4 = 5 \qquad \Rightarrow \qquad x - \frac{1}{2} = \frac{5}{4}$$
$$\Rightarrow \qquad x = \frac{5}{4} + \frac{1}{2} \qquad \Rightarrow \qquad x = \frac{5 + 2}{4} = \frac{7}{4}$$

18. length = 100 m, breadth = 50 m.

Unit-III : Commercial Mathematics

9. Applications of Percentage

Exercise 9.1

- **1.** (i) $\frac{b \times \frac{1}{2}}{100} = 50 \implies b = 2 \times 50 \times 100 = ₹$ **10000** (ii) ₹ 300 (iii) $\frac{3.4 \times b}{100} = 68 \implies b = \frac{68 \times 100}{3.4} = ₹$ **2000**
- **2.** Let the school opened for *x* days, then

$$\frac{x \times 90}{100} = 216 \implies 90 \times x = 216 \times 100$$
$$x = \frac{216 \times 100}{90} = 240$$
$$x = 240 \text{ days.}$$

3. Let the monthly income be *x*, then

$$x \times \frac{15}{100} = 600 \implies 15 \times x = 600 \times 100$$
$$x = \frac{600 \times 100}{15} = 4000$$
$$x = ₹ 4000$$

- **4.** 800
- **5.** The population of the town in 2010 be *x*

$$\frac{5 \times x}{100} = 8820 \implies x = \frac{8820 \times 100}{5} = 176400$$

6. Let the Kishan's monthly salary be x spend on food = 30% donates = 3% then total spent in percentage = (30 + 3) = 33% $x \times \frac{33}{100} = 2310$ $x \times 33 = 2310 \times 100$ $x = \frac{2310 \times 100}{33}$ $x = ₹70 \times 100 = ₹7000$

7. Let the school strength be *x*

$$x \times \frac{8}{100} = 160 \qquad \Rightarrow \qquad x = 2000$$

The new strength = 2000 + 160 = 2160

8. Let the total number of matches played the team during the year be *x*.

Then
$$\frac{x \times 60}{100} = 12$$
$$x = \frac{12 \times 100}{60} = \frac{100}{5} = 20$$

- **9.** 1200
- 10. Let the Manjul's income be x Monika's income $= \frac{x \times 60}{100} = \frac{3x}{5}$ $x + \frac{3x}{5} = \frac{8x}{5}$ \therefore If Monika's income is $\frac{8x}{5}$, then Manjul's income $= \frac{3x}{5}$ \therefore Monika's income is 1, then Manjul's income $= \frac{3x \times 5}{5 \times 8x}$ \therefore Monika's income is 100, then Manjul's income $= \frac{100 \times 3x \times 5}{5 \times 8x}$ $= \frac{100 \times 3}{8} = \frac{300}{8} = \frac{75}{2} = 37.5\%$ 11. 800000, 288000 12. If total number of students is 100, number of girls are 60 Number of boys = 40 If number of girls = 60, then total number of students = 100 If number of girls = 1, then total number of students = $\frac{100}{60}$ If number of girls = 690, then total number of students = $\frac{100}{60}$ If number of students = 1150 Total number of students = 1150

Number of boys = 40% of total number of students = $\frac{40}{100} \times 1150$

Number of boys = **460**

Exercise 9.2

1. (i) CP =₹ 250, Loss =₹ 15, SP =₹ 235
(ii) CP =₹ 450, SP =₹ 540, Profit = 20%
(iii) SP =₹ 3038, Loss = 2% overhead expenses =₹ 100
(iv) CP =₹ 30000, Profit =₹ 6000, Profit = 20%
(v) Profit =₹ 72, SP =₹ 972, Purchased at ₹ 400
2. Cost price includes the over head charges also
Therefore, CP =₹ (70000 + 5000) = 75000
SP = 67500
SP = CP
Loss = CP - SP = 75000 - 67500 = ₹ 7500
Loss % =
$$\frac{Loss \times 100}{CP} = \frac{7500 \times 100}{75000} = \frac{100}{10} = 10\%$$

3. Cost price includes the over head charges also
Therefore, CP = ₹ (15 + 5) = ₹ 20
SP = ₹ 24
SP > CP
Profit SP - CP = 24 - 20 = 4
Profit % = $\frac{Profit \times 100}{CP} = \frac{4 \times 100}{20} = \frac{100}{5} = 20\%$
4. Cost price includes the overhead charges also. Therefore
= ₹ (150 × 20 + 200)
= ₹ (3000 + 200) = ₹ 3200
SP = (150 × 12 × 2.40)
= ₹ 4320
SP > CP
Profit % = ₹ (4320 - 3200) = ₹ 1120
Profit $= \frac{1120 \times 100}{3200} = 35\%$
5. Let the CP be ₹ x. Then
SP = ₹ 990
Profit = $\frac{x \times 10}{100} = \frac{x}{10}$
SP = x + $\frac{x}{10} = \frac{11x}{10}$
 $\frac{11x}{10} = 990 \Rightarrow x = \frac{990 \times 10}{11} \Rightarrow x = ₹ 900$

- **6.** Profit = 25%
- **7.** 25%
- **8.** Let the CP be $\mathbf{E} \times \mathbf{x}$, then

SP = 10240
Loss =
$$\frac{x \times 20}{100} = \frac{x}{5}$$

SP = $x - \frac{x}{5} = \frac{4x}{5}$
Then $\frac{4x}{5} = 10240 \implies \text{ or } x = \frac{10240 \times 5}{4}$

x = ₹ **12800**

9. Let the CP be $\gtrless x$, then

SP = ₹ 240
Loss =
$$\frac{x \times 20}{100} = \frac{x}{5}$$

SP = $x - \frac{x}{5} = \frac{4x}{5}$
 $\frac{4x}{5} = 240 \implies x = ₹ 300$
CP = ₹ 300 and SP = ₹ 360
Profit = SP - CP = ₹ (360 - 300) = ₹ 60
Profit % = $\frac{\text{Profit} \times 100}{300} = 20\%$
 $= ₹ \frac{60 \times 100}{300} = 20\%$

10. SP = ₹ 135 If new SP = ₹ 165

Gain % = ?
Loss % =
$$\frac{CP - SP}{CP} \times 100$$

 $\frac{10}{100} = \left(1 - \frac{₹ 135}{CP}\right)$
 $\frac{₹ 135}{CP} = 1 - \frac{1}{10} = \frac{9}{10}$
 $CP = \frac{₹ 135 \times 10}{9} = 15 \times 10 = ₹ 150$
 $SP = ₹ 165$
Profit = $SP - CP = ₹ 165 - 150 = ₹ 15$
Profit % = $\frac{Profit}{CP} \times 100 = \frac{₹ 15}{₹ 150} \times 100 = 10\%$

11. SP = ₹ 198, gain = 10% $CP = \frac{100}{100 + Profit \%} \times SP$ Then, = $\frac{100 \times 198}{110}$ = ₹ 180 Second calculator SP = ₹ 198, Loss = 10% $CP = \frac{100}{100 - Loss \%} \times SP = \frac{100}{100 - 10} \times ₹ 198$ = $\frac{100 \times 198}{90}$ = ₹ 10 × 22 = ₹ 220 = ₹ 198 × 2 = ₹ 396 Total SP CP = ₹ (180 + 220) = ₹ 400 CP > SPLoss = ₹ (400 - 396) = ₹ 4 Loss $\% = \frac{\text{Loss} \times 100}{\text{CP}} = \frac{4 \times 100}{400} = \frac{100}{100} = 1$ Loss = 1%**12.** CP = ₹ 960, Profit = 5% $SP = \frac{100 + Profit \%}{100} \times CP = \frac{100 + 5}{100} \times 960$ $=\frac{105 \times 960}{100}$ = ₹ $\frac{100800}{100}$ = ₹ 1008 Again Subramaniam sold it to Mukul at a profit of 10% $SP = \frac{100 + Profit \%}{100} \times CP = \frac{100 + 10}{100} \times 1008$ $=\frac{110\times1008}{100}= \texttt{E}\frac{110880}{100}=\texttt{1108.80}$ **13.** SP = 150, Loss % = 4% $CP = \frac{100}{100 - L \cos \frac{0}{2}} \times SP$ $=\frac{100}{100-4}$ × 150 = ₹ $\frac{100}{96}$ × 150 = ₹ 156.25 $SP = \frac{100 + Profit\%}{100} \times CP$ Again $SP = \frac{100 + 20}{100} \times 156.25$ = $\frac{120 \times 156.25}{100}$ = ₹ **187.50 42**

14. CP = 200, Profit = 30% $SP = \frac{100 + Profit \%}{100} \times CP$ $= \frac{100 + 30}{100} \times CP = \frac{130 \times 200}{100} = ₹ 260$ Cost price of 20 orange = ₹ 20 × 2 = ₹ 40 CP = ₹ 40, Profit = 5% $SP = \frac{100 + Profit \%}{100} \times CP = \frac{(100 + 5)}{100} \times ₹ 40$ $= ₹ \frac{105 \times 40}{100} = 10.5 \times 4 = ₹ 42$ Cost of remaining orange CP = 80 × 2 = 160 SP = (260 - 42) = ₹ 218 SP > CP Profit = ₹ (218 - 160) = ₹ 58 Profit % = \frac{Profit × 100}{CP} $= \frac{₹ 58 \times 100}{160} = 36.25\% = 36.25\%$

Exercise 9.3

1. (i) P = ₹500, R = 12%, T = 3 years $SI = \frac{P \times R \times T}{100} = \frac{500 \times 12 \times 3}{100} = ₹180$ (ii) ₹210, (iii) ₹810 (iv) $P = ₹560, Time = \frac{73}{365}$ years, SI = ₹14 $R = \frac{SI \times 100}{P \times T} = \frac{14 \times 100 \times 365}{560 \times 73} = 12.5\%$ (v) ₹ 8.00, ₹488.00 (vi) P = ₹720, R = 4%, SI = ₹72 $Time = \frac{SI \times 100}{R \times P} = \frac{72 \times 100}{4 \times 720} = \frac{100}{40} = 2\frac{1}{2}$ years Amount = P + SI = ₹720 + ₹72 = ₹7922. (i) SI = ₹192, A = ₹992, (ii) SI = ₹162, A = ₹612(iii) $P = ₹600, R = 2\%, T = \frac{20}{12} = \frac{5}{3}$ years $SI = \frac{P \times R \times T}{100} = \frac{600 \times 2 \times 5}{3 \times 100} = ₹20$ Amount = P + SI = ₹(600 + 20) = ₹620

3. (i)
$$2\frac{1}{2}$$
, (ii) $\frac{1}{2}$ year
(iii) SI = ₹ 12600
 $R = 18\%$ per annum
 $P = 10000$
 $T = \frac{SI \times 100}{P \times R} = \frac{12600 \times 100}{10000 \times 18} = 7$ years.
4. (i) SI = ₹ 36, $R = 3\%$ and $T = 3$ years
 $P = \frac{SI \times 100}{R \times T} = ₹ 400$
(ii) ₹ 350, (iii) ₹ 9600
5. (i) $P = ₹ 500$, SI = ₹ 150, $T = 4$ years
 $R = \frac{SI \times 100}{P \times T} = \frac{150 \times 100}{500 \times 4} = \frac{30}{4} = 7.5\%$
(ii) 13%
(ii) $P = 700$, SI = ₹ 168, $T = \frac{16}{12}$ years
 $R = \frac{SI \times 100}{P \times T} = \frac{168 \times 100 \times 12}{700 \times 16} = 18\%$
6. $P = ₹ 7200$, $R = 15\%$, $T = 4\frac{1}{2}$ years $SI = \frac{P \times R \times T}{100} = \frac{7200 \times 15 \times 9}{2 \times 100}$
 $= 36 \times 15 \times 9 = 4860$
 $A = SI + P = 4860 + 7200 = ₹ 12060$
7. ₹ 1050
8. SI = ₹ 83.20, $A = ₹ 603.20$,
9. ₹ 1600
10. Let P be x , $R = 10\%$, $T = 4$ years, $A = ₹ 2520$
 $A = SI + P$
 $2520 - x = SI$ $\left[\because P = \frac{SI \times 100}{R \times T}\right]$
 $x = \frac{(2520 - x) \times 100}{10 \times 4}$
 $4x = 25200 - 10x$
 $14x = 25200 \Rightarrow x = \frac{25200}{14}$ $x = ₹ 1800$
11. ₹ 7100

12. Let *P* be *x*, *R* = 9%, SI = 594, *T* = 3 years

$$P = \frac{SI \times 100}{R \times T}$$

$$= \frac{594 \times 100}{9 \times 3} = 22 \times 100 = ₹ 2200$$

Exercise 9.4

1.
$$P = \overline{1500}, A = \overline{225}, SI = A - P = \overline{1155}, T = \frac{7}{2}$$
 years
 $R = \frac{SI \times 100}{P \times T} = \frac{1155 \times 100 \times 2}{1500 \times 7} = \frac{2310}{105} = 22\%$
2. Let *P* be *x* and amount $= \frac{7x}{4}$
 $SI = Amount - Principal = \frac{7x}{4} - x = \frac{3x}{4}$
 $P = x, SI = \frac{3x}{4}, T = 6$ years
 $R = \frac{SI \times 100}{P \times T} = \frac{3x \times 100}{4 \times x \times 6} = 12.5\%$
3. $\overline{12400}, 10\%$
4. Let $P = x, A = 2x, SI = 2x - x = x, R = \frac{25}{2}\%, T = ?$
 $T = \frac{SI \times 100}{P \times R} = \frac{x \times 100 \times 2}{x \times 25} = 8$ years
7. For Rajiv, $P = \overline{12500}, T = 1$ year, $A = \overline{1250}$
 $R = \frac{SI \times 100}{P \times T}$
 $= \frac{765 \times 100}{P \times T}$
 $= \frac{765 \times 100}{P \times T}$
 $= \frac{765 \times 100}{P \times T} = \frac{765}{45} = 17\%$
For Sanjiv
 $P = \overline{1250}, T = 3, R = 17\%, SI = ?$
 $SI = \frac{P \times R \times T}{100} = \frac{4500 \times 17 \times 3}{100} = \overline{1225}$
Amount = Principal + SI
 $= \overline{1250}, 10\%$

8. ₹600, 12%

45

Unit-IV : Geometry

10.

Lines and Angles

Exercise 10.1

1. (i) 35° (ii) 60° (iii) 120° **2.** 90° **3.** (i) supplementary (ii) complementary (iii) supplementary (iv) supplementary (v) complementary (vi) complementary **4.** (i) 65° (ii) 27° (iii) 33° **5.** (i) 75° (ii) 93° (iii) 38° 6. $(x+4)^{\circ} + (2x-7)^{\circ} = 90^{\circ} \Rightarrow 3x-3^{\circ} = 90^{\circ} \Rightarrow x = \frac{93^{\circ}}{3} = 31^{\circ}$ **7.** 40°, 140° **8.** (i) 45° (ii) 90° **9.** (i) Yes (ii) No (iii) Yes (iv) Yes **10.** (i) No (ii) Yes (iii) No (iv) Yes **11.** Let the angles are 2x, 3x and 7x $2x + 3x + 7x = 180^{\circ} \implies 12x = 180^{\circ}$ $x = 15^{\circ}$ Therefore, angles are $2 \times 15^\circ$, $3 \times 15^\circ$, $7 \times 15^\circ$ or 30° , 45° , 105° **12.** $(27.4)^\circ = 27^\circ 24'$ **13.** 10% of x + 40% of $2x^\circ = 90^\circ$ $\frac{10}{100} \times x + \frac{40}{100} \times 2x = 90^{\circ}$ $\frac{x+8x}{10} = 90^{\circ} \implies 9x = 90 \times 10$ $x = 100^{\circ}$ **14.** 15° and 75° **15.** 40° and 140° **16.** 600° **17.** According to the figure, $4x^{\circ} + 3x^{\circ} + 2x^{\circ} + x^{\circ} = 180^{\circ} \implies 10x^{\circ} = 180^{\circ}$ $x^{\circ} = \frac{180^{\circ}}{10} = 18^{\circ}$ Supplement of $18^{\circ} = 180^{\circ} - 18^{\circ} = 162^{\circ}$

Exercise 10.2

(i) Interior alternate angles (ii) Adjacent angles
 (iii) Corresponding angles (iv) Exterior alternate angles

(v) Co-interior (allied) angles (vi) Exterior alternate angles(vii) Corresponding angles (viii) Vertically opposite angles(ix) Adjacent angles

2. (i) property of corresponding angles (ii) property of alternate interior angles (iii) property of co-interior angles are supplementary

3. $a = 110^{\circ}, b = 70^{\circ}, c = 70^{\circ}, d = 110^{\circ}, e = 70^{\circ}, f = 110^{\circ}, g = 70^{\circ}$

- **4.** (i) $x = 100^{\circ}$ [Corresponding angles], (ii) $x = 70^{\circ}$, (iii) $x = 70^{\circ}$
- **5.** (i) $(2x + 6)^{\circ} + (3x + 54)^{\circ} = 180^{\circ}$ [Co-interior angles]

$$5x + 60^\circ = 180^\circ \implies x = \frac{120}{5} = 24$$

(ii) 27°

- **6.** (i) $\angle a = \angle b = \angle c$ (ii) x = y = l = n = r and k = m = q
- **7.** (ii), (iv) and in (v) l_2 and l_4
- 8. (i) $z + 60^{\circ} = 180^{\circ}$ [Co-interior angles] $\Rightarrow z = 120^{\circ}$ $x + y = 60^{\circ}$ [Alternate interior angles] ...(1)
 - $y + z = 143^{\circ}$ [Alternate interior angles] ...(2)
 - Putting $z = 120^{\circ}$ in eq. (2), we get
 - $y + 120^\circ = 143^\circ \implies y = 23^\circ$
 - Putting $y = 23^{\circ}$ in eq. (1), we get $x = 37^{\circ}$
 - (ii) *a* =55°, *b* = 53°, *c* = 72°
 - (iii) $a = 105^{\circ}, b = 75^{\circ}, c = 75^{\circ}, d = 75^{\circ}$
- **9.** (i) No (ii) No (iii) Yes

11. Centroid, Orthocentre, Incentre and Circumcentre of a Triangle

Exercsie 11.1

1. (ii) yes

2. Point *C*

- 3. (i) Yes (ii) Outside
- **4.** Yes, DR = RE, FR is a median of the ΔDEF
- **5.** Do it yourself **6.** Do it yourself
- **7.** No **8.** Yes
- **9.** Yes
- (i) line segment, perpendicular (ii) Orthocentre (iii) Outside
 (iv) AC and BC (v) AC (vi) Concurrent (vii) Centroid (viii) AB
 (ix) Interior.

- **1.** Do it yourself
- **3.** Yes
- **5.** Do it yourself
- **2.** No
- **4.** Yes
- rself **6.** Do it yourself
- (i) Concurrent (ii) Perpendicular bisectors (iii) Concurrent (iv) Angle bisectors (v) ∠A.

12.

Quadrilaterals

Exercise 12.1

- **1.** $\triangle ACD$, $\triangle ACB$, two triangles
- **2.** Four triangles, $\triangle AOB$, $\triangle BOC$, $\triangle COD$, $\triangle DOA$
- **3.** (i) Four—*PQ* and *QR*, *QR* and *RS*, *RS* and *SP*, *SP* and *PQ*
 - (ii) Two—PQ and RS, PS and QR
 - (iii) Four— $\angle P$ and $\angle Q$, $\angle Q$ and $\angle R$, $\angle R$ and $\angle S$, $\angle S$ and $\angle P$
 - (iv) Two— $\angle P$ and $\angle R$, $\angle Q$ and $\angle S$
- **4.** (i) Vertices—*A*, *B*, *C*, *D*
 - (ii) Angles— $\angle A$, $\angle B$, $\angle C$, $\angle D$
 - (iii) Diagonals—AC and BD
 - (iv) Adjacent sides—*AB* and *BC*, *BC* and *CD*, *CD* and *DA*, *DA* and *AB*
 - (v) Adjacent angles— $\angle A$ and $\angle B$, $\angle B$ and $\angle C$, $\angle C$ and $\angle D$, $\angle D$ and $\angle A$
 - (vi) Opposite sides—AB and CD, BC and DA
 - (vii)Opposite angles— $\angle A$ and $\angle C$, $\angle B$ and $\angle D$
- 5. Yes, one point

Exercise 12.2

- **1.** Let fourth angle of quadrilateral = x° By the angle sum property of a quadrilateral = 360° $65^{\circ} + 65^{\circ} + 135^{\circ} + x^{\circ} = 360^{\circ} \implies x^{\circ} = 360^{\circ} - 265^{\circ}$ $x = 95^{\circ}$
- **2.** 90°
- **3.** 115°
- **4.** In quadrilateral *ABCD*, $\angle D = 150^{\circ}$ Let $\angle A = \angle B = \angle C = x^{\circ}$

By the angle sum property of a quadrilateral,

 $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\Rightarrow \quad x^{\circ} + x^{\circ} + x^{\circ} + 150^{\circ} = 360^{\circ}$ $3x^{\circ} = 360^{\circ} - 150^{\circ} = 210^{\circ} \Rightarrow \quad x = 70^{\circ}$

5. No, sum of the four angles is greater than 360°.

6. Let the measures of the four angle are 3x°, 5x°, 7x° and 9x° 3x° + 5x° + 7x° + 9x° = 360° [Angle sum property of quadrilateral] 24x° = 360° ⇒ x° = 15° ∴ The angles of the quadrilateral are 3 × 15° = 45°, 5 × 15° = 75°, 7 × 15° = 105°, 9 × 15° = 135°
7. 75°
8. 36°, 72°, 108°, 144°
9. 110°

13.

Exercise 13.1

2. Do it yourself

9. 70°

5. All angles are equal (90°)

7. $\angle ACB = 90^\circ$, $\angle ABC = 30^\circ$

- 3. 60°, Since angles formed in the same segment are equal
- 4. Do it yourself

1. Do it yourself

- **6.** $\angle ACD = \angle APD = 75^{\circ}$
- **8.** $\angle RQS = 50^\circ$, $\angle RPS = 50^\circ$
- **10.** $\angle DFE = 45^{\circ}, \angle FED = 85^{\circ}.$

14.

Symmetry

Exericse 14.1

- **1.** Draw yourself
- 2. (i) one (ii) two (iii) none (iv) one (v) two (vi) two
- **3.** (i) bold (ii) dotted (iii) bold (iv) dotted (v) dotted (vi) bold.

Exericse 14.2

- **1.** (i) 2, (ii) 2, (iii) 3, (iv) 4, (v) 4, (vi) 5, (vii) 6, (viii) 3
- **2.** (i), (ii), (iv), (v), (vi).

49

Circle

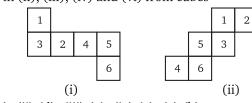
1. to

3. Do it yourself

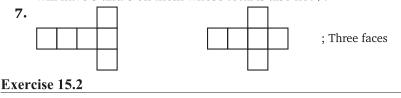
6. Isosceles triangle;

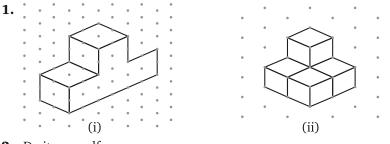
- **4.** Capital Letter H and rectangle;
- **5.** 3 and 3;
- 7. 1 (perpendicular bisector of its diameter); No.;
- **8.** A scalene triangle; **9.** $6; 60^{\circ}$
- **10.** M.

15.

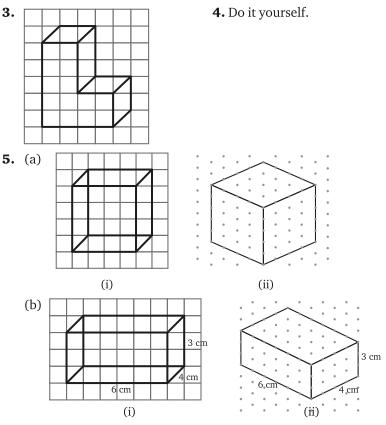

3.

Unit-V : Mensuration


Visualizing Solid Shapes


Exercise - 15.1

- **1.** (i) 6, 12 (ii) 1, 1 (iii) No, 2 (iv) 3, 2 (v) 6, 4
- 2. Nets in (ii), (iii), (iv) and (vi) from cubes



- **4.** (i) (c), (ii) (d), (iii) (a), (iv) (e), (v) (b);
- **5.** Do it yourself.
- **6.** (i) Yes (ii) No; because one pair of opposite faces will have 1 and 4 on them whose total is not 7, and another pair of opposite faces will have 3 and 6 on them whose total is also not 7.

2. Do it yourself.

- **6.** Do it yourself
- (a) (i) Rectangle (ii) Rectangle (b) (i) Circle (ii) Circle (c) (i) Square (ii) Square (d) (i) Rectangle (ii) Circle (e) (i) Triangle (ii) Circle (f) (i)Triangle (ii) Square
- 8. (i) 30 (ii) 20 (iii) 46
- **9.** Do it yourself.

Perimeter and Area

Exercise 16.1

16.

1. (i) Area of the parallelogram = Base \times Height

```
= 8 \text{ cm} \times 4.5 \text{ cm} = 36 \text{ cm}^2
```

(ii) 8.8 cm^2 , (iii) 8.75 cm^2

2. Area of a parallelogram = 200 cm^2 One side of parallelogram = 12 cm Area of parallelogram = Base \times Height Height = $\frac{200}{12} = \frac{50}{3}$ cm = 16.67 cm **4.** (i) 18 cm² (ii) 4.5 cm 3. 24 cm, 12 cm Exercise 16.2 **1.** (i) 7 cm Circumference of the circle = $2\pi r = 2 \times \frac{22}{7} \times 7 = 44$ cm (ii) 132 cm (iii) 176 mm (iv) 22 cm **2.** (i) Radius = 14 mm Area of circle = $\pi r^2 = \frac{22}{7} \times 14^2 = \frac{22}{7} \times 14 \times 14$ $= 22 \times 28 = 616 \text{ mm}^2$ (ii) Diameter = 49 m \Rightarrow Radius = $\frac{\text{Diameter}}{2} = \frac{49}{2}$ Area of circle = $\pi r^2 = \frac{22}{7} \times \left(\frac{49}{2}\right)^2 = \frac{22}{7} \times \frac{49}{2} \times \frac{49}{2}$ $=11 \times 7 \times \frac{49}{2} = 1886.5 \,\mathrm{m}^2$ (iii) 75.46 m² (iv) $\frac{550}{7}$ cm² **3.** The minute hand of a tower clock is long = 1.4 mThen, the tip of the hand move in 1 hour = $2\pi r$ $= 2 \times \frac{22}{7} \times 1.4$ [:: r = 1.4 m] $= 8.8 \,\mathrm{m}$ **4.** Let, radius of circle = rThen, Diameter = 2r and circumference = 2r + 30 $2\pi r = 2r + 30 \implies 2\pi r - 2r = 30$.:. $2r\left(\frac{22}{7}-1\right)=30$ \Rightarrow $2r=30\times\frac{7}{15}=14$ r = 7 cm**5.** Radius of a circle = 20 cm \therefore Area of a circle = πr^2 = 3.14 × 20 × 20 = 1256 cm² Circumference of circle = $2\pi r = 2 \times 3.14 \times 20 = 125.60$ cm

- **6.** Given that area of circle = 144π cm² $\pi r^2 = 144\pi$ · · . r = 12 cmThen, circumference of circle = $2\pi r = 2\pi \times 12 = 24\pi$ cm 7. Outer circumference of a circle park = 396 m $2\pi r_1 = 396$ [Here, r₁ is outer radius] *.*.. $r_1 = 63 \text{ m}$ Then, $r_2 = 63 - 3.5 = 59.5 \text{ cm}$ \therefore Area of the path = $\pi [r_1^2 - r_2^2] = [63^2 - 59.5^2]$ $=\pi[3969 - 3540.25]$ $=\frac{22}{7} \times 428.75 = 1347.50 \,\mathrm{m}^2$ and cost of gravelling the path = 1347.5 × 4.15 = ₹ 5592.13 **8.** A truck wheel moves in 12,000 revolutions = 26.4 km \therefore Truck wheel moves in 1 revolutions $=\frac{26400}{12000}$ m Circumference of a truck wheel is = 2.2 m $2\pi r = 2.2$ Then. $2r = \frac{2.2}{\pi} = \frac{7}{10}$ m Diameter of the wheel = 70 cm 9. 220 m **10.** 14 cm **11.** Diameter of wheel of a car is = 56 cm Circumference of wheel of a car is $= 2\pi r = 176$ cm Then, Distance cover in a rotate by wheel = 176 cm No. of rotate by wheel in a journey of 88 km = $\frac{8800000 \text{ cm}}{176 \text{ cm}} = 50,000$ 12. 3.96 km **13.** Total length of wire = 18.7 cm + 14.3 cm + 18.7 cm + 14.3 cm $= 66 \, \mathrm{cm}$ If this wire is reshaped and bent in the form of circle Then, circumference of circle = 66 cm .**`**. $2\pi r = 66 \text{ cm}$ $r = 10.5 \,\mathrm{cm}$ and area of circle = $\pi r^2 = \frac{22}{7} \times 10.5 \times 10.5 = 346.5 \text{ cm}^2$
- **14.** 2.1 cm

15. Let, inner radius of circle = r m Then, outer radius of circle = (r + 2) m \therefore Outer circumference of circle = 44 m $2\pi(r+2) = 44$ $r = 5 \,\mathrm{m}$, outer radius = 7 m Inner circumference of the circular path = $2\pi r = 2 \times \frac{22}{7} \times 5$ $=31\frac{3}{7}$ m Area of the path = $\pi [7^2 - 5^2]$ $=\frac{22}{7}[49-25]=\frac{22}{7}\times 24=75\frac{3}{7}$ m **16.** 536 cm^2 **17.** Solve it as question 13. **18.** ₹231000 **19.** Outer radius of circle = 21 cm Let, inner radius of circle = r cm: Area of concentric circles = 770 cm^2 $\pi [21^2 - r^2] = 770$ ·. $441 - r^2 = 245$ $r^2 = 441 - 245 = 196$ $r = 14 \, \text{cm}$ **21.** 5 cm: 78.5 cm² **20.** 132 m; ₹ 528

17. Volumes and Surface Areas

Exercise 17.1

- 1. (i) Faces of cuboid : *PQRS*, *TUVW*, *PSTW*, *QRUV*, *STUR*, *PQVW*
 - (ii) edges of cuboid : PS, QR, PQ, SR, ST, RU, TU, TW, UV, WV, PW, QV
- **2.** AB = CD = GH = x, AD = BC = EH = y, AE = BE = DH = z
- **3.** *EA* or *FB* or *HD* or *GC*
- 4. ABFE, ADHE, BCGF, CDHG
- 5. (i) BFGC (ii) EFGH, ABFE, ABCD, CDHG
- **6.** *ABCD*, *ABFE*, *AEHD*, vertex *G*, Yes, these are four diagonals *AG*, *BH*, *CE*, *DF*

- 7. (i) Cuboid : butter box, lunch box, chalk box, air conditioner(ii) Cube : Ice cubes, sugar cubes, dice, cubical blocks.
- 8. Cube
- 9. Cuboid
- (i) 6 (ii) 12 (iii) Edge (iv) Dimensions (v) 4(vi) Cube (vii) 8 (viii) Vertex (ix) Congruent squares (x) 3 (xi) 90° (xii) 4.

Exercise 17.2

1. (i) Volume of cube = (side)³ $(15)^3 = 3375 \,\mathrm{mm}^3$ (ii) 1953.125 cm³ (iii) 17.576 m³ (iv) 5.088448 m³ 2. (i) length = 12 cm, breadth = 10 cm, height = 8 cmVolume of cuboid = length \times breadth \times height $= 12 \text{ cm} \times 10 \text{ cm} \times 8 \text{ cm} = 960 \text{ cm}^{3}$ (ii) 1760.22 cm³ (iii) 1672704 mm³ (iv) 445.295 m³ (v) 5.04 m^3 (vi) 56250 cm^3 **3.** Volume of cuboidal wood = 36 cm^3 Length = 4 cm, Breadth = 3 cmHeight = $\frac{\text{Volume}}{\text{Length} \times \text{Breadth}} = \frac{36}{4 \times 3} \text{ cm} = 3 \text{ cm}$ **4.** 6 m 5. One match box volume = $4 \text{ cm} \times 2.5 \text{ cm} \times 1.5 \text{ cm}$ Such 12 match box volume = 12×4 cm $\times 2.5$ cm $\times 1.5$ cm $= 180 \text{ cm}^{3}$ 6. Volume of cuboidal water tank = $6 \text{ m} \times 5 \text{ m} \times 4.5 \text{ m} = 135 \text{ m}^3$ $[::1 m^3 = 1 kL]$ Quantity of water tank = 135 kL = 135000 L7. Volume of wooden plank = 0.25 m^3 Length \times Width \times thickness = 0.25 m³ Length \times 2.5 m \times 0.025 m = 0.25 m³ Length = $\frac{0.25}{2.5 \times 0.025}$ = 4 m **8.** Volume of cuboidal pit = $8 \text{ m} \times 6 \text{ m} \times 3 \text{ m} = 144 \text{ m}^3$ Cost of digging = 144 × ₹ 30 = ₹ **4320 9.** Total required water of population of village = 150×4000 = 600000 L $1000 L = 1 m^3$ 55

600000 L = 600 m³
Days =
$$\frac{20 \times 15 \times 6}{600} = \frac{6}{2} = 3$$
 days

10. $1000 L = 1 m^3$

$$50000 L = \frac{50000}{1000} = 50 m^3$$

Volume of cuboid = Length \times Breadth \times Height 50 = 2.5 \times 10 \times Breadth

$$50 = 2.5 \times 10 \times \text{Breadth}$$

Breadth =
$$\frac{50}{2.5 \times 10}$$
 = **2 m**

- **11.** Joined to two cubes end to end then Length = 12 cm, Breadth = 6 cm, Height = 6 cm Volume of cuboid = $12 \times 6 \times 6$ cm³ = **432 cm³**
- **12.** Number of wooden crates which can be put in the godown $= \frac{(40 \times 25 \times 15) \text{ m}^3}{(1.5 \times 1.25 \times 0.5) \text{ m}^3} = 16000 \text{ crates}$
- **13.** Side of cube = xVolume of cube = x^3
 - (i) Doubled then 2xVolume of cube = $(2x)^3 = 8x^3 = 8$ times (ii) $\left(\frac{1}{8}\right)^{th}$ times (iii) 27 times

14. 4000 blocks

15. Number of cubical blocks = $\frac{3.60 \times 3.60 \times 3.60}{0.12 \times 0.12 \times 0.12} =$ **27000 blocks**

Exercise 17.3

- 1. Surface area of cube = $6a^2$ = $6 \times (11)^2 = 6 \times 121 = 726 \text{ cm}^2$ (ii) 8.64 m² (iii) 4374 cm² 2. (i) 120640 cm² (ii) ₹ 241.28 3. Total surface area of lunch box = $2(l \times b + b \times h + h \times l)$ = $2(15 \times 9 + 9 \times 8 + 8 \times 15)$ = $2 \times 327 = 654 \text{ cm}^2$ 4. 544 cm² 5. 4750 cm²
- **6.** ₹110800

7. Surface area = $2(l^2 + l^2 + l^2) = 6l^2 = 6 \times 15 \times 15 = 1350 \text{ cm}^2$ **8.** 66 m² **9**, 278 m² **10.** ₹20880 11.₹30000 **12.** As given in hint, firstly the surface area of a brick and secondly divide 9.375 m² from the calculated area. 100 bricks **13.** Area of four walls = $2 \times h(l + b)$ $= 2 \times 5 \times (10 + 8) = 180 \text{ m}^2$ Required length of wallpaper $l \times \frac{50}{100} = \frac{180}{1}$ $l = \frac{180 \times 100}{50} \,\mathrm{m}$ $l = 180 \times 2 = 360 \text{ m}$ **14.** (i) 9.16 m² (ii) ₹ 458 **15.** Area of four walls = $2 \times h \times (l + b)$ $= 2 \times 5 \times (15 + 10)$ $= 10 \times 25 = 250 \,\mathrm{m}^2$ Area of roof = $l \times b$ $= 15 \times 10 = 150 \text{ m}^2$ Total painted area = (250 + 150) m² = **400 m²**

Unit-VI : Statistics

18.

Data Handling

Exercise 18.1

- (i) tables, charts (ii) fives (iii) ungrouped (iv) X
 (v) median, descending;
 (i) Arrange in ascending order :
 2, 2, 3, 5, 7, 9, 9, 10, 11
 - Here n = 9, which is odd.
 - \therefore Median = Value of $\frac{1}{2}(9+1)^{\text{th}}$ term
 - = Value of 5^{th} term = 7
 - (ii) 16 (iii) 16

4. 5.5

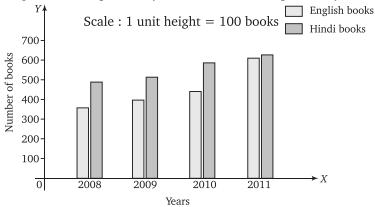
- **3.** (i) Mode = 7 (ii) Mode = 21
- **5.** 5.5

6.	7	7. 8.28
8.	21	9. 15.

Exercise 18.2

- (i) No. of student who getting the highest marks = 10 Then, required money for distributing the prizes = ₹ 10 × 10 = ₹ 100 (ii) No. of student who getting the lowest marks = 25 Then, total problems solve per day = 25 × 5 = 125
 (i) Total no. of students have their heights more than 150 cm = 17 + 13 + 5 = 35 Percentage (No. of student) = 35/50 × 100 = 70% (ii) No. of student have heights above 150 cm but below 160 cm = 17 + 13 = 30
 (i) Number of newspapers read in Hindi = 800, Punjabi = 400, Urdu = 200, Marathi = 300, Tamil = 100
 - (ii) Excess of the number of newspapers read in Hindi over those of English = 800 500 = 300
 - (iii) Tamil

(iv) In increasing order


Tamil = 100, Urdu = 200, Marathi = 300, Punjabi = 400, English = 500, Hindi = 800

4. Let the horizontal axis represent the days and the vertical axis represent the number of bulbs sold.

We take a scale 1 unit = 5 bulbs

- 5. Do it yourself.
- **6.** (i) $466\frac{2}{3}\%$ (ii) 5950
- **7.** Take a different years along *x*-axis and no. of books along *y*-axis. English books represent by 1 and Hindi books represent by 2.

(i) 2011

(ii) Yes; Increases in sale of English books = 620 - 350 = 170 and increase in sale of Hindi books = 650 - 500 = 150

8. (i) Cricket (ii) Watching

Half Yearly Model Test Paper

1. (i) Positive, (ii) Positive, (iii) Negative, (iv) Negative 2. (i) 1, (ii) -3785, (iii) 0, (iv) -3065, (v) -312, (vi) -567 3. Work in 1 day = $\frac{1}{3}$ of a km Work in $6\frac{2}{3}$ day = $\frac{20}{3} \times \frac{1}{3} = \frac{20}{9} = 2\frac{2}{9}$ km 4. (i) $\frac{2}{3}$, (ii) $-\frac{1}{5}$ (iii) $\frac{1}{100}$, (iv) 1, (v) $\frac{3}{20}$ 5. (i) $\frac{5}{20}$ (ii) $\frac{9}{36}$ (iii) $\frac{-20}{-80}$ (iv) $\frac{1000}{4000}$ (v) $\frac{-25}{-100}$ 6. (i) $\frac{-144}{-504} = \frac{144}{504}$ $= \frac{2 \times 2 \times 2 \times 2 \times 3 \times 3}{2 \times 2 \times 2 \times 3 \times 3 \times 7} = \frac{2}{7}$

$$\frac{2}{2}\frac{144}{2}$$

$$\frac{2}{2}\frac{72}{2}$$

$$\frac{2}{2}\frac{36}{36}$$

$$\frac{2}{2}\frac{126}{3}$$

$$\frac{3}{3}\frac{63}{3}$$

$$\frac{3}{21}$$

$$\frac{2}{7}\frac{7}{7}$$

$$(ii) \frac{2}{7}(iii) -\frac{2}{7}(iv) \frac{9}{25}$$
7. (i) $\frac{1}{4}, -\frac{1}{4}, \text{ No}(ii) \frac{3}{8}, -\frac{3}{8}, \text{ No}(iii) \frac{1}{66}, -\frac{1}{66}, \text{ No}$
8. (i) $\frac{4}{15} \times \frac{9}{5} \times \frac{50}{3} = 4 \times 2 = 8$

$$(ii) -\frac{1}{6}$$

$$(iii) \left(-\frac{3}{2} \times \frac{4}{5}\right) + \left(\frac{9}{5} \times -\frac{10}{3}\right) - \left(\frac{1}{2} \times \frac{3}{4}\right) = -\frac{6}{5} + \frac{(-6)}{1} - \frac{3}{8}$$

$$= -\frac{6}{5} - \frac{6}{1} - \frac{3}{8} = -\left(\frac{6}{5} + \frac{6}{1} + \frac{3}{8}\right)$$

$$= \left(\frac{48 + 240 + 15}{40}\right) = -\frac{-303}{40} = -7\frac{23}{40}$$

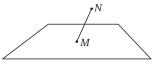
$$(iv) 2$$
9. (i) $\frac{1}{243} = \frac{1}{3^5} = \left(\frac{1}{3}\right)^5$

$$(ii) \frac{-16}{729} = -\left(\frac{4}{27}\right)^2$$

$$(iii) \frac{-625}{16441} = -\left(\frac{5}{11}\right)^4$$

$$(iv) \frac{-2401}{-256} = \frac{2401}{256} = \left(\frac{7}{4}\right)^4$$
10. (i) 1.05 × 10⁶ (ii) 1.353 × 10⁹, 1.361 × 10⁹

$$(iii) 1.027 × 109, 5.312 × 108, 4.958 × 108 (iv) 1 × 10^{-6}$$
11. (i) binomial (ii) trinomial (iii) monomial (iv) trinomial (v) binomial
12. Let the total worth of Shanti Lal's property be x Son's share $=\frac{x}{5}$


$$\text{Wife's share} = \frac{3x}{5}$$

If wife's share = 288000 $288000 = \frac{3x}{5} \implies 3x = 288000 \times 5$ $x = \frac{288000 \times 5}{3} =$ **480000** ₹ **480000** is total worth of Shanti Lal's property. **13.** The population of the town in 2010 be x $\frac{5 \times x}{100} = 8820 \implies x = \frac{8820 \times 100}{5}$ x = 176400**14.** (i) CP =₹ 250, Loss =₹ 15, SP =₹ 235 (ii) CP =₹ 450, SP =₹ 540, Profit = 20% (iii) SP = ₹ 3038, Loss = 2% overhead expenses = ₹ 100 (iv) CP =₹ 30000, Profit =₹ 6000, Profit = 20% (v) Profit =₹ 72, SP =₹ 972, Purchased at ₹ 400 **15.** (i) *SI* =₹ 192, *A* = ₹ 992 (ii) *SI* =₹ 162, *A* = ₹ 612 (iii) $P = ₹ 600, R = 2\%, T = \frac{20}{12} = \frac{5}{3}$ years $SI = \frac{P \times R \times T}{100} = \frac{600 \times 2 \times 5}{3 \times 100} = ₹ 20$ Amount = *P* + SI = ₹ (600 + 20) = ₹ **620**

Annual Model Test Paper

- Supplementary : (i), (iii), (iv) Complementary : (ii), (v), (vi)
- (i) Property of corresponding angles(ii) Property of alternate interior angles(iii) Property of co-interior angles are supplementary
- 3. (i) line sigment (ii) outside (iii) AC (iv) concurrent (v) contoid
- 4. Do it yourself.
- (i) Four : PQ and QR, QR and RS, RS and SP, SP and PQ
 (ii) Two : PQ and RS, PS and QR
 (iii) Four : ∠P and ∠Q, ∠Q and ∠R, ∠R and ∠S, ∠S and ∠P
 (iv) Two : ∠P and ∠R, ∠Q and ∠S.
- **6.** Do it yourself.
- 7. Do it yourself.
- 8. Capital Letter H and Rectangle.

9. Yes, one point.

- **10.** Joined to two cubes end to end then Length = 12 cm, Breadth = 6 cm, Height = 6 cm Volume of cuboid = $12 \times 6 \times 6$ cm³ = **432 cm³**
- **11.** (i) 2, (ii) 2, (iii) 3, (iv) 4, (v) 4, (vi) 5, (vii) 6, (viii) 3
- 12. Total length of wire = 4.4 cm + 4.4 cm + 4.4 cm = 13.2 cm
 ∴ Circumference of wire is rebent to form of a circle = 13.2 cm

$$2\pi r = 13.2$$

$$r = \frac{13.2}{2\pi} = 2.1 \text{ cm}$$

Area of circle = $\pi r^2 = \frac{22}{7} \times 2.1 \times 2.1 = 13.86 \text{ cm}^3$

- 13. (i) Area of the tin sheet required to make 20 such tins
 - $= 20 \times 2[lb + bh + hl]$ = 20 × 2[26 × 26 + 26 × 45 + 45 × 26] = 40[676 + 1170 + 1170] = 40[3016] = 40 × 3016 = 120640 cm²

| 1

(ii) Cost of the tin sheet for making these tins

$$= 12.0640 \,\mathrm{m}^2 \times 20 =$$
₹ 241.28

- 14. (i) Arrange in ascending order : 2, 2, 3, 5, 7, 9, 9, 10, 11 Here *n* = 9, which is odd. ∴ Median = Value of $\frac{1}{2}(9 + 1)^{\text{th}}$ term = Value of 5th term = 7 (ii) 16 (iii) 16
- **15.** (i) ₹ 100, (ii) 125