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PART-A : DIFFERENTIAL CALCULUS

Introduction to Indian ancient Mathematics and Mathematicians should be included under
Continuous Internal Evaluation (CIE).(Appendix)

Neighbourhood of a point, bounded above sets, bounded below sets, Bounded Sets,
Unbounded sets, open sets/intervals, closed sets/intervals, Limit points of a set, Isolated points,
Limit, continuity and differentiability of function of single variable, Cauchy’s definition, Uniform
continuity, boundedness theorem, Intermediate value theorem, extreme value theorem,
Darboux’s intermediate value theorem for derivatives and Chain rule.

Rolle’s theorem, Lagrange and Cauchy Mean value theorems, Taylor's theorem with various
forms of remainders, Successive differentiation, Leibnitz theorem, Maclaurin's and Taylor's
series. Partial differentiation, Euler's theorem on homogeneous function.

Tangent and Normal, Asymptotes, Curvature, Envelops and evolutes, Tests for concavity and
convexity, Points of inflexion, Multiple points, Parametric representation of curves and tracing of
parametric curves, Tracing of curves in Cartesian and Polar forms.

Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences,
Cauchy's convergence criterion, Cauchy sequence, limit superior and limit inferior of a
sequence, subsequence, Series of non-negative terms, convergence and divergence,
Comparison tests, Cauchy's integral test, Ratio tests, Root test, Raabe's logarithmic test, de
Morgan and Bertrand’s tests, alternating series, Leibnitz's theorem, absolute and conditional
convergence,

PART-B : INTEGRAL CALCULUS

Concept of partition of interval, Properties of Partitions, Riemann integral, Criterion of Riemann
Integrability of a function, Integrability of continuous and monctonic functions, Fundamental
theorem of integral calculus, Mean value theorems of integral calculus. Differentiation under
the sign of Integration.

Improper integrals, their classification and convergence, Comparison test, p-test, Abel's test,
Dirichlet's test, quotient test, Beta and Gamma functions.

Rectification, Volumes and Surfaces of Solid of revolution, Pappus theorem, Multiple integrals,
change of order of double integration, Dirichlet's theorem, Liouville’s theorem for multiple
integrals.

Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional
Derivative, Vector Integration, Statements of Theorems, of Gauss, Green & Stokes, only without
proof, Applications of these theorems for evaluation of double and triple integrals.
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Part-A : Differential Calculus

UNIT |

" SE! X VERY SHORT ANSWER TYPE [/ i:1'D)

Q.1. Find the supremum and infimum of the set S=[xcz :x2 < 25].
Ans. SinceS=[xez x% < 25]=[-5,-4,-3,-2,-1,0,1,2,3,4,5]

Since Sis a finite subset of R, the smallest member of § is -5, which is alower bound of §
and hence infimum of § is -5. Similarly 5 is the supremum of §.
Q.2. The null set ¢ is neither bounded below or above, nor unbounded.
Ans. Since, there is no member in ¢, we can not check whether a given real number can be a
bound for ¢ or not. Thus, bounds for ¢ do not exists. On the other hand we can as well say that
every real number is a lower or upper beund for there is no member in ¢ which does not
satisfy the required property of bounds.
().3. Find the limit points of the closed interval [0, 1].
Ans. Let A=[0,1]

Then, in a similar manner as in Ex. 1.

We have D[(0,1])=[0,1]
Q.4. Define the term ‘Supremum’.
Ans. [fsisanupper bound of a subset S of R and any real number less than s is not an upper
bound of S, then s is called the least upper bound (Lu.b) or supremum (sup) of S.

Q.5. What do you mean by unbounded set of real numbers ?
Ans. AsubsetSofRissaid tobe unbounded ifitis notbounded above ornot bounded below.

Q.6. Define the term ‘Bounded intervals’.
Ans. Ifaand b areany real numbers thath>a,then the intervals ]a, b[,[a, b],[a,b[ and ]a, b]
are called bounded intervals because each of them is a bounded subset of R.

Q.7. Evaluate lim [x sin 1)
x—0 X

Ans. Let f(x]=xsin1.
X

Then RHL=f(0+0)= lim f(0-+h)= lim (0+h)sin| —— |= lim Asin

h—0 h—>0 0+h) h-oo h

=0x a finite quantity lying between -1 and 1
=0, (1)
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Also, LHL=f({0-0)= lim f(0-h)
h—0 1 1
= lim (0—h)sin| —— |= lim hsin >
h—0 0-h h

- h—>0
=0. -(2)
Now, from (1) and (2) we find that RHL =LHL =0.
Hence, lim [x sin 1) =0.
x—>0 X

Q.8. What do you mean by unbounded intervals?
Ans. Ifaisany real number, then the intervals ]Ja, « [,[a, [, ]—«,a[ and ]—«, a]are called

unbounded intervals because each of them is not a bounded subset of R

Q.9. Is it true that the null set ¢ is a nbd of each of its points?

Ans. Yes, the null set¢ is a nbd of each of its points because there is no point atall in$ and so
there is not point in ¢ of which it is not a nbd.

Q.10. Define the term ‘Isolated point’.

Ans. A pointa € Ais said to be an isolated point of A if it is not a limit point of 4 i.e, if there
exists a nbd of a which contains no points of A other than a itself.

Q.11. Show that the function f(x)=x|x |is differentiable at the origin.
Ans. Here, we have

Rf'(0)= lim f(0+h]—f(0)= lim f(h)_f(0)= lim M= lim A=0
h—0 h h—=0 h r—0 h h—>0

= Rf'(0)=Lf'(0)
Hence, f(x)is differentiable at x =0.

xZ

Q.12. Show that f(x)= _11 is continuous for all values of x except x =1.
x —

Ans. Ifx#1,then f(x)=(x +1)=A polynomial
= f(x)is continuous for all values of x #1.

If x=1, f(x) is of the form g, which is not defined and so the function f(x) is

discontinuous at x =1.
2
x“,x=1, .. .
£ is discontinuous

Q.13. Show that the function f(x )is defined by f(x)= { 1
y X =

atx =1.
Ans, Here the value of f(x)atx=1is 2

=  f)=2
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Now, RHL=f(140)= lim f(1+h)= lim (1+h)? =1
h—>0 h—0

LHL = f(1-0)= lim f(1-h)= lim (1-h)* =1
h—>0 h—>0

Therefore, we have
fA+0)=f(1-0)= f(1)
= f(x)is not continuous at x =1.
Q.14. A function fis defined by
f{x)=xP cos(1/x),x #0and f(0)=0.
Find the differentiability at x =0.
Ans. Let us suppose p>0,

Rf' (0)= f (0+h] f0) _ iy ()7 cos(l /R)—0

h—) 0 h
= ’}1_r)nohp 1 cos1/h (1)
o 1 @)= Jim SOP=SO)_ iy i)’ s STLEL
= lim —(-1)? AP cos(1/h) (2)

Now if f (x)exists atx =0, then we must have Rf' (0) = Lf' (0)and this is possible only if
p-1>,0ie, p>1which gives Rf' (0) = Lf’ (0). Hence in order that fis differentiable atx =0, p
must be greater than 1.

Q.15. A function fis defined as follows

f(x) 1+xifx<2
XI=
S5-xifx>2

Test the character of the function at x =2 as regards its differentiability.
Ans. We have
RF'(2) = f[2+h) f(2)_ lim 5—(2+h)-3
h h—0 h

= lim _—h= lim (-1)=-1
h>0 h hoo

and = f(2 h) 18- hi—>01+(2—hh) : h;o:zzl'

= Rf'(2)= Lf' (2).
Hence, the function f(x)is not differentiable at x =2.
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Q.1. Give examplesto show that the union of an infinite collection of closed sets
is not necessarily closed.
Ans. LetF, =[1/n,1],neN.

Then each F, is a closed set in R because each closed interval is a closed set.
Now U {F, :ne N}

_ 1 1 1 .
=l v V. 0]

Since ]0, 1] is not a closed set in R, therefore it follows that the union of an infinite
collection of closed sets is not necessarily closed.

As an other illustration consider the set Q of all rational numbers.

Wecanwrite Q=u{r},reQ

Since each singleton set in R is closed, therefore @ is expressed as an infinite union of
closed sets. But we know that Q is not closed since its complement Q' is not open. Hence it
follows that an infinite union of closed sets in not necessarily closed.

Q.2. In the closed interval [-1,1] let fbe defined by
f(x)=x?% sin(1/ x?)for x =0and f{0)=0.
In the given interval (i) Is the function bounded? (ii) Is it continuous?
(iii) Is it uniformly continuous ?
Ans, (i) Ifx e[-1,1]and x = 0, we have
| FG)I=|x” sin (L/x*)|=|x* |-|sin (1 /%)
=|x % -|sin (1 /x?)|<1-1=1
[+|sin(l/x?)|<land -1<x<1=>|x|<1]
Also £ (0)=0 = | £ (0)]=0<1.
Thus| f (x)|<1,¥ xe[-1,1] also so fis bounded in[-1,1].
(i) Letce[-1,1]and c = 0.

We have lim f (x)= lim x? sini=c:2 sinl=f(c),
X—=>C X—=>C xz cz

.. f({x)is continuous at every point ¢ of[-1,1]ifc = 0.
Now to check the continuity of f(x)atx =0.

Wehave f(0-0)=Ilim f(0-h)=lim f(-h),h>0
h—>0 h—>0

= lim (—h)2 sin{ }= lim h? sin iz =0.

h—0 (-h)? | ho0 h
; 2 o i ;
[ lim h° =0and |sin — $11fh¢0}
h—0 R
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Again f(0+0]—hh_r)n0f(0+h)—hll_r>n0f[h)—’}1_r)noh smh—z—().

Also f(0)=0.

Since f (0—0)=f (0) = f (0 +0), therefore f (x)is continuocus atx =0.

Thus f(x)is continuous at each point of[-1,1] and so it is continuous in[-1,1].

(iii) Since fis continuous in the closed interval [-1,1] therefore it is also uniformly
continuous in[-1,1].
Q.3. A, B are sets such thatac A, be B= a< b. Show that

Lu.b.A<g.lb.B.

Ans, Letlub.A=sandglhb.B=t.

To show that s<t.

Suppose if possible s>t.

Since L.u.b. A =5 and t < s, therefore there exists x € A such that x >t.

Now glb. B =t and x>t = there exists y e B such that y<x.

Thus there exists x € 4 and y € B such that x > y which is against the hypothesis that
acAbeB = a<bh

Hence our initial assumption s >t is wrong and we must have s <t.
Q.4. Find the limit points of the interval ]0,1].
Ans. LetA=]0,1].

Now, firstly we shall show that every point of the closed interval [0, 1] is the limit point
of A.

Let p€[0,1]. Then for £ >0, the open interval ]p —¢, p +&[ must contains infinitely
many points of 4, therefore, it contains at least one point of A other than p.

=> p is the limit point of ]0,1].

Now, we shall show that no points, other than [0, 1] is the limit point of ]0,1] [ie,
p£[0,1], then p is not the limit point of ]0,1].

Letg >0be such thatz is less than the distance of the point p from each of the end points
0 and 1 of the closed interval [0, 1].

= e<|p-0lande<|p-1}

= the open interval ] p —¢, p +& [ does not contain any point of the set A.
= pis not the limit point of A.

Therefore, p is the limit point of ]0,1[ if and only if p €[0,1].

Hence, D(0,1D=[0,1]
n__n
Q.5. Evaluate lim [uJ
x—>a|l X—-a
Ans. We have
n n n n
f)=*"" = fla +h)=w

Xx—a a+h-a
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Ans.
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=:}ll|:{a" +na" ! .h +n("2|_1]::1"_z .h% +} —a"}

Now, RHL = f{a +0)= lim f(a+h)=na™’. (1)
h—0

Similarly we can find
LHL = f(a - 0)= lim f(a—h)=na". -(2)
h—>0

Now, from (1) and (2) we find that

fla+0)=f(a—0)=na"! = lim f(x)=n gh

Determine the values of a, b, ¢ for which the function

sin(a+1)x +sinx for x<0
X
f(x)=+ c forx=0
24172 _1/2
(x+ .'.vrbx)?’/2 X forx>0

is continuous atx =0.
We have

24172 _,1/2 12
RHL = £(0+0)= lim f(0-+h)= lim (HOAY — —h"" _ jyp (L+DRYT 1

[1+Lbh+..]-1 L

= lim =,
h>0 bh 2

sin (@ +1)(—h) +sin (—h)

LHL = f(0-0)= li 0-h)=li
ft ]hl-rz.nof( ]hl-r:lu

(=h)
2sin 1a +1 |hcos @
. sin(@a+1)h+sinh _ . 2 2
= lim = lim
ho0 h h—0 h

- 1im sin {(a+2)/2}h
h—»0 {(a+2)/2}h
Now, for continuity at x =0, we have f (0+0)= f(0-0}= f(0)

1 1 3
= “=g+2=¢c > c=",a=—-".
2 2 2

(@a+2)cos(ah/2)=a+2
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Q.7. Show that the function fdefined on R" as
f(x)= sinl, vV x>0
x

is continuous, but not uniformly continuous on R™.
Ans. LetaeR*.

We have LHL = f(a —0)= lim f(a—h)= lim sin =sin1
h—>0 h—»0 a-h a

1

RHL = f{a +0)= lim f(a+h)= lim sin =sin —

A ) h—)Of( ) h—0 a-+th a

fl@)=sinl =  f@+0)=f(a)=fla—0)
a

= fis continuous at a.
Since, a is arbitrary point in R™. Therefore, fis continuous on RT.

Now, to show fis not uniformly continuous on RT.

Let & be any positive number. Take

1 1 2 +
Xy =" ,X3 = = wherene Z
nm nm+w /2 (2n+1)(x)
such that X —X3 -1 _Q?

nt (2n+1)x
Now, |xq —x5 |<dbut| f(x1)- f(x2)]= sinmt—sin%(Zn +1)n|=1>¢

which shows that for this choice of £, we can not find a & >0 such that
| fx1)—f(x2)l<efor|xq —x5 |<8 Vxq{,x, e R,

Hence, fis not uniformly continuous on R*.
Q.8. Write the Boundedness theorem and prove it.
Ans. Boundedness Theorem : If a function f(x)is continuous in a closed interval [a, b],
then it is bounded in that interval.

Proof: By the above theorem, for a given € > 0, we can sub-divide the interval[a, b]into
a finite number of sub-intervals say [@a =ag,a1],[a1,a2]....,[@p_1,a, =b]such that

| f(x1)= flxz)I<e (1)

for any two points xq, X3 in the same sub-interval. Let x be any point in the first sub-interval
[@,aq]- Then by (1), we have, V x €[a,a ]

| f(x)— fla)|<eie, f(a)—s< f(x)< fla) +&. (2]
In particular, for x =a4,| f(a1)}- f(a)l<e. w(3)

Again Vxelaq,azl| f(x)- flaq)|<e. ..(4)
: V x €[aq,a;], we have
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| f(x)- fl@)l=| f(x)- f(a1)+ fla,)- f(a)l
<| f(x) - flaq )|+ flag)- f(a)l
<g +¢, from (3) and (4) =2¢.
ThusV xe[aq,a; ], we have| f(x)- fla)|<2e ie, f(a)-2e< f(x)< f(a)+2¢ ..(5)
From (2) and (5], we see that all the values of f(x) in the first two sub-intervals lie
between
fla)—2¢ and f(a)+2s.
Proceeding in the same way, we can show thatV x €[a,_, ,a,, =b], we have
fla)—ne< f(x)< f(a)+ne.
Hence all the values of f (x)inthe interval[a, b]will be between f(a)—neand f(a) +ne.
Thus f(x)is bounded in [a, b].
Q.9. Write Darboux’s theorem or Intermediate value theorem and prove it.
Ans. Theorem : If fis finitely differentiable in a closed interval[a, b]and f’(a), f' (b) are of
opposite sign, then there exists at least one pointc € Ja,b[ such that ' (c)=0.

Proof: Let us suppose that f' (a)>0and f' (b)< 0, then there exists intervals Ja,a +h[

and |b—h, b[,h> 0, such that
f(x)> f(a),Vxela,a+h[ sufl)
Jf(x)> f(b),Y x€1b—h,bl. w(2)

Now, since f is finitely differentiable, then it is continucus in [a,b] and hence it is
bounded on[a, b]and attains its supremum and infimum at least once in[a, b] [ A continuous
function attains its supremum and infimum at least once in [a, b]].

Thus if M is the supremum of fin[a, b] then there existsc €[a, b]such that f(c)=M.Itis
clear from (1) and (2) that the upper bound is not attained at the end points @ and b so that
ce€la,b|.

Now, we shall prove f'(c)=0.

If f'(c)>0, then there exists an interval ]c,c +h],h>0, such that f(x)> f{c)=M,
¥ x € ]c,c +h[, which is not possible, since M is the supremum of the function f(x)in[a,b].

If f'(c)<0, then there exists an interval [c —h,c[,h>0 such that f(x)> f(c)=M,
V x €[c —h, c[, which is not possible.

Hence, we conclude that f'(c) =0.

Q.10. Show that the function f:R — R defined by
Fix)= lim (1+ smnx)t -1
too(1+sinnx) +1
is discontinuous at the points x =0,1,2,...,n,...
Ans. Forx=0,1,2,3,...,n,... we have sin & x =0, so that at these values of x
¢
Fl)=tim 4400 -1_
n—>o (140)° +1

Now if 2m< x<2m+1 (m being an integer), then sin nx is positive. Hence for such
values of x, we have

0.
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—=2 . . 1
fO= lim — @¥sinm) w0y 1o
toew, 1 1+l o0
(1+sin 7x)* ®

Again if 2m +1< x < 2m + 2, sin nx is negative and so

lim (1 +sinmx)t =0.
t—o

Hence for such values of x, f(x)= s -1
0+1
From the values of f(x) mentioned above, we observe that
(i) if xis an even integer, then
f(x)=0, f(x+0)=1 and f(x-0)=-1
and (ii) if x is an odd integer, then
f(x)=0,f(x+0)=-1 and f(x-0)=1
Hence f has discontinuities of the first kind at x =0,1,2,...,n,...

Q.11. Prove that the function f(x)=|x| is continuous at x=0, but not
differentiable at x =0, where | x | is the absolute value of x.
Ans. Firstly, we check the continuity of the function f(x)at x =0.

We have f(0)=|0|=0
F{0+0)=lim f(0+h)=lim f{(h) =lim |h|=lim A=0
h—0 h—0 h—0 h—>0
F0-0 im0~ iz F-4) i, bl -,
f(0+0)=f(0)=f(0-0)

Hence, f(x)is continuous at x =0.
Now, we check the differentiability of the function f(x)atx=0.

We have, Rf’(()): lim w= lim M= lim |h|_0=1
h—>0 h h—>0 h h>0 h
and 1 @)= lim TOR SO _ yy FCR-F0)
h—>0 -h h—>0 -h
= By =0 g B oy
h>0 —h h—0 —h
= Rf'(0)= Lf'(0)

Hence, the function f(x) is not differentiable at x =0.
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2 .1 .
=, 0
QI2.If f(x)=4X S+ ¥ x7
0 , if x=0

then, show that f(x)is continuous and differentiable everywhere.
Ans. We have

; ; 1 ; . A
0+0)= lim 0+h)=lim 0+hzsm—=hmh sin = =0
fe ) h—)Of( ) h—)U( ) 0+h R-o0 h

\ ; .1 \ 2 .1
0—-0)= lim 0-h)= lim (0—h)? sin—— =— lim h® sin==0
f( ] h—)Of[ ] h—)O( ) 0-h h—0 h
F(@=0 =  f(0+0)=f(0)=(0-0).
Hence, the function is continuous at x =0.
Now R 0)= Jim JOHSO)_yy SO-10)
h—)o h
K2 sinl—o )
=lim — " lim hsin==0

h—0 h h—0
aniil Lf' (0)= f (0- h) f(0) _ hllmo f(—hz;f(o)

[—h]2 sin (—1] -0
= lim R = lim hsin1=0
h—0 —h h—0
= Rf' (0)=Lf" (0).
Hence, f(x)is differentiable at x =0.
Q.13. Show that the function f: R— R defined by

¥ )= [1+1smlogx} if x=+0
0 if x=0

is continuous everywhere but not differentiable at origin.
Ans. Firstly, we check the continuity of f(x)atx=0

f(0+0)=lim f(0+h)= lim [[0+h] {1+1 sin log (ﬂ+h]z }]
h—0 ho0 3

= lim |:h +[BJ sin log hz} =0+0x a finite quantity =0.
h—0 3

Similarly f(0-0)=0. Also, given that f(0)=0.

Hence, fis continuous at x =0.

Now we shell check the differentiability at x =0
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(0+h) {1 +;sin log (0-+h)> } —0

Rf' (0)= lim = lim [1 +Lsinlog hz]
h—0 3

h h—0

which does not exists, (since sin log h? oscillate between —1 and 1 as h—> 0)

#0.
Similarly Lf’(0)=does not exist.
Hence, f(x)is not differentiable at origin.

Q.14. Write the chain rule of differentiability and prove it.
Ans. Theorem:Letfand gbe functions such that the range of f is contained in the domain of
g.Iff is differentiable at x; and g is differentiable at f(x( ),theng of is differentiable atxy ,and

(go fY(x9)=4g (f(x0))- f' (x0)
Proof: Let y= f(x)and y; = f(xq).
Since fis differentiable at x5, we have
im L&) _ ey or fx)- flg)=(x—x0)LF(t0 )+ (0] (1)
X—Xp X—Xp
where A (x) > Oasx — x.
Further since g is differentiable at y,, we have
tim 230 -90)
Y= J=Yo

=g (o) or g(¥)-g(e)=(y—yo)lg' () +r(¥)] ..(2)

where p(y)— 0as y— y;.
Now (go f)(x)—(go f)(xg)=g(f(x)}-g(f{x0))=9(y)—9(x)
=(y-yol)lg (o) +u (¥ by (2)
=[f(x)- f(xo)llg (o)} +p (Y]
=(x —xg)J[f' (xo ) +A (x)1[g’ (o) +1 (¥)], by (1).
Thus if x # x, then

o D=0 1))t ¢4y ()11 (r0) +1 G0 -(3)

X—Xp

Also f being differentiable at xg,is continuous atxg and hence asx — xg, f(x)— f(xp)

Le, y— yp.
Consequently u(y)—> 0asx— xp and A (x]J—> 0as x — xg.

Taking the limits as x & xy, we get from (3)
lim [gOf)(X)—[gOf)(XU) :gr (yo]fr (XO)‘
XX X—Xq
Hence the function gof'is differentiable at x5 and (gof Y (xo)=g" (f (x¢)) f' (xp}
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[= +}
LetI, =} e g [be an open interval for eachne N. Prove that () I, Is
n’ n
n=1

not a nbd of each of its points.

Sincene N
1
— s 0asn—o
n
1 1
= —~“—>0asn—>wandl+~ > lasn— .
n n
Therefore, we can find that
Oe:|—l,1+1|:VneN. = 1e:|—l,1+1|:VneN.
n n n n

Also, each point lying between 0 and 1 is an element of the open interval

:|—1,1+1|:VneN.
n n

But —[1} whatever be the value of n, is not an element of the open interval

n
:| —1,1+1{,neN
n n

o
=> All numbers less than 0 are not in n Iiis
n=1

Similarly, we can show that all numbers greater than 1 are not n I,,neN.
n=1

Now,[0,1]= ﬁ ﬂ —1,1+i|}= ﬁ Ly
n=1

n=1

and [0, 1] being a closed interval is a nbd of each of the points of the interval [0, 1] except the
end points 0 and 1.

Q.2.

Ans,

o0
Hence, n I, is not a nbd of each of its points.
n=1

Find the limit points of the set S of rational numbers of the form

tneN .

n
(n+1)
Here, we have S ={ ‘ne N}
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n =n+1—1 1 1

n+l n+1 n+l
Let & >0 be arbitrary small positive number, then the nbd J1-¢,1+¢[ of the point 1

Also,

contains a point of S, other than 1, because by taking n> % , we have

o =
n_ s /(1—€) o8
n+l [e/(1-€)]+1] n+l

= 1is a limit point of the given set A.

Now, we check whether there is any other limit point of S other than 1.

Let us supposepe 4, p#1.

Now, these are following case :
Case (i)Ifp>1

Then choose € > p —1, then the nbd ]p—¢, p + €[ of p contains no point of S, other
than p.

= pis not the limit point of §.
Case (ii)Ifp<1

p € A, then there exists a point of §, which is nearest to p and let p,. be this element of §,
which is nearest to p. Choose a positive integer & such that e<|p, —p| then the nbd

1p —¢, p +&[ of the point p contains no point of § and so as before, we conclude that p is not the
limit point of S.

i
n+l’
n-1 ., n-1
ie,
(n-1}+1 n
n-1 . n+l
(n+1)+1  n+2
Now, we can find that
n+l n =(n+1)2 —-n(n+2) _ 1
n+2 n+l (n+1)(n+2) (n+1)(n+2)

n _n—1=r12—[11—1](n+1]= 1
n+l n n(n+1) n(n+1)

Suppose thatpe Sand letp=

Then the point just before p is

and the point just after p is

and

Alson+2<n
1 1 1 1
= — <= = <
n+2 n (n+1)(n+2) (n+1)n
n _n—1>n+1_ n
n+1 n n+2 n+1

Hence, we have

Let us choose a positive number &£ >0 such that £< Lao N then, the nbd
n+2 n+l

1p —&,p +¢&[ of p contains no point of S, other than p.
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= p is not the limit point of S.
Hence, we find that no real number other than 1 is a limit point of A
Q.3. Find the right hand and the left hand limits in the following cases and
discuss thezexistence of the limit in each (1:ase -
@) im 2~ -8, Gil) tim & L,
x>2 x-2 x>0 el/X 11

(iii) ll_r)n0 f(x) where f(x) is defined as

f(x) =x,whenx>0-f(x]—0, when x =0; f(x)=—x, when x<0.

-8
-2

Ans. (i) Let fx )-

2(2+h)* -8
2+h-2
2(4+4h+h*)-8 . Bh+2h?

m = lim

h—>0 h 0 h

h (8 +2h)

We have F(2+0)=lim f(2+h)=lim
h—0

= lim
h—0

= lim (8+2h) =8.
h—0
2 (2-h)% -8
h—>0 2—-h-2
2(4-4h+h®*)-8 .. —Bh+2K?
lim = lim
h—0 -h h—0 -h

_ i —28=2) _ (8—-2h)=8.
h—0 -h h=0

Again F(2- O)— 11m f(2-h)=

2

Since f (2+0) = f (2—0) =8, therefore lim ax 5 exists and is equal to 8.

x—>2 x-2

1/x 1
(ii) Let f(x)=

1/ +1
Here the right hand limit, i.e,

p1/h
fF(0+0)= hm f(0+h)— lim f[h)—’}l_l’)n 1/”1
e "+
[/ N 1/h
— lm © B/
h—0 o1/ [1+(1/e / ]
Again the left hand limit, ie,
e~ 1/h _q

F(0- 0)—11m F(o- h)—hm f(—h)—hmi
h—0 g~1/h 4
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1fhy s
_ lim L/e™'™) 1=0 1=—1
h—0 (1/e1/h)+1 0+1

1/x _

Since f (0+0)# f (0—0), hence lim €
0 %41

(iii) We have the right hand limit ie,

does not exist.

fFO+0)= }1irr%l f (0+h), where h is + ive but sufficiently small
_)

= lim f(h) lim A, [ h>0and f(x)=xifx>0]
h—0 h—0
=0.

Also, the left hand limit, ie,
f(0-0)= }{in}) f(0—h), where h is + ive but sufficiently small
_)

= lim f(-h)=lim —(-h), [+ —h<Oand f(x)=-xif x<0]
h—0 h—0

= lim h=0.
h—0

Thus both the limits f (0+0)and f {0—0) exist and are equal to zero.

Hence lim f(x) exists and is equal to zero.
x—0

Q.4. Show that the function fdefined as
0, forx=0

—-X, for0<x<;

flx)=;

1 forx=1

has three points of discontinuity. Find such points. Also draw the graph of
the function.
Ans. Here, we observe that the domain of the function f(x)is closed interval [0, 1] when

O<x< ;, the function f(x) =;—x, which is being the polynomial is continuous at each points

of its domain.
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= f(x) is continuous at each point of the open interval }0,1[ when 1< x<l1,

f(x) =; —x, which is also a polynomial in x

=> f(x)is continuous in the open interval ] ;,1 |:

Now, we check the continuity at x =0, % and 1.

Atx=0.

Atx =0, f(x)=0
and RHL = f(0+0)=1lim f (0+h)=lim f(h)= lim (1—11]
h—0 h—0 h—ol 2

B | =

= f{0)= f(0+0)
= f{x)is not continuous at x =0.

1

Atx=-.

N

1 1
Atx=", f(x)==
5 f(x) 5
and RHL=f|1-0|=tim f[2-n|=1lim |11 a]|=1im n=0
2 A0\ 2 0|2 \ 2 h—0

- Al

= f{x)is not continuous at x = ;

Atx =1,

Atx=1, f(x)=1

- f1-0)=1i _W=1lim |3 —(1-k) |=tim [ L+n]=1
and LHL=f(1-0) gl_r)nof[l h) ’}1_1)1':][2 (1 h)] ’ll_r:}l[zHlj 5
=  f)=f0-0)

= f(x)is not continuous atx =1
Hence, the function f(x) has three points of discontinuity given by x =0, % and 1.

}
)]

Graph of f(x): The graph of the function consists of the point (0, 0), the segment of the

liney:; —xfor0<x< ;,the point(;, ;],the segment of the lineyzz —xfor;< x<1land the

point (1, 1). The graph of f(x)is given as fig.
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(0,0) i
1
2

>
1}

Q.5. Show that the function
1 _ e—Z/X
x - 6
J(X)=1"|1+e72x

0 , ifx=0
is continuous but not differentiable at x =0.
Ans. Continuity of f(x) at x=0. We have

el/h _,—1/h }

RHL = f (0+0) = li 0+h)=li h)=lim A| ———
f(0+0) hl—r:»nof[ ) hinof() h1—1>n0 Lllh_,_e—llh

_p—2/h _
= lim h[le:|:0x10:0x1:0

, Ifx=0

1+0
LHL=f (0-0)= hlimo f(0-h)

g1/t _ —1/-h g1/~h _ 1/h
= lim f(-h)=lim -h|~ —  |=lim -h|~——
h—>0 h—>0 el/ ™t Lo~/ | ho0 e 1/  ,1/h

—2/h
. [l -h["_z ‘1]=0xg:=o = F(0+0)=F(0)=f(0—0).
e

Hence, f(x)is continuous at x =0.
Differentiability of f{x)atx=0.

We have
RF(0)= lim JO+M)-fO) _ ) f)-F(0)
k>0 h h—0 h
1/h _-1/h
hi_o
el/h 1o 1/k 1-e~2/h 4_g
= lim = lim = =

h—0 h h—>01+e—2/h 1+0

Lf'(0)=lim fO@-MN-FO)_ y;, FEM-FO)
h—0 -h h—0 —h

19
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[(—h) e~ 1/ _ 1/h _0]

. g B gk et o1
= lim = lim = —
h—0 —h h—0 p2/h 4 0+1
= Rf’(0)= Lf'{0).

Hence, the function f(x) is not differentiable at x =0.

Q.6. Test the continuity and differentiability in —co< x<w of the following
function :

-

1 if —o<x<0

f(x)=< 1+sinx if05x<g

2
2+|x-"] ift<x<w
\ 2 2

Ans. Firstly, we check the continuity and differentiability at x =0.
(1) Continuity of f(x)atx=0.
f(0)=1+s5in0=1
0+0)=1li 0+h)=1li h)=lim (1+sinh)=1
f(0+0) hl_r)nof( ) hl_]flof( ) hl_r)no( sin 1)

1O PN 1, = 1

= f(0+0)=£(0)=f(0-0})
Hence, f(x)is continuous at x =0.
(2) Differentiability of f(x)atx=0.
R @ im SONSO)_ y S0)-5O

i
-> h—0 h
2 Tk (1+sinh)—(1+sin0) _ lim 5D h_

1
h—0 h h—>0 h
.4 1f (@)= lim JO-R-fO) _ ;. fER-fO)
h—>0 —h h—>0 —h
= lim 1-(1+sin0) _ i -2 i 0=0
h—0 —h h—»0—-h k-0
= Rf’ (0)= Lf' (0)

Hence, f(x)is not differentiable at x =0.

Now, we shall check the continuity and differentiability at x = g
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{3} Continuity of f(x)atx = g

P

2
F[E+0|=tim £|T+h|=tim |24+ trsn|-Lal |=lim @+h2)=2
\ 2 h—>0 2 h—>0 2 2 h—>0

(

fIT-0|=1lim f|E=h|=1lim |[1+sin| T =h ||= lim (1 +cosh)=1+1=2
\ 2 h—0 2 h—>0| 2 h—>0

(n Y _(m)_ (= _
= 1(5o)=r(3)=r(50)

Hence, f(x)is continuous at x = g

(4} Differentiability of f(x)atx = ;

(e

k>0 h
2 2
2+{g+h_g} 2 2+[g_g]
2
- lim —lim 272 _ jim h—o0
h—0 h h>0 h h—>0
f["-h)- f(“] 1+sin ("-h]-z
L : 2 2 : 2
Lf'| =~ |=lim = lim
2) h>0 -h h—0 -h
. 2
— —1+cosh= i 1—cosh= Ty 2sin” (h /2)
h—0 -h h—>0 h h—>0 h

= T | M i - w22 | g (smssz]=1x0=0
h—>0| h/2 h—-o0| h/2 [Rr—>o0

since Rf'| = |=1f| £ |.
(&)
= f(x)is differentiable at x =%.

Since, here, we checked the continuity and differentiability at x =0 and g

It is obviously continuous and differentiable at all other points. a
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G4 [¢I'W.X VERY SHORT ANSWER TYPE [ H D

Q.1. Discuss the applicability of Rolles theorem in the interval [-1,1] to the
function f(x)=|x|.
Ans, Here, we have f(x)=|x|

= f(-1)=1 oy
anil f(1)=1} = fQ)=/(-1).

Now, the function f(x)is continuous throughout the closed interval [-1,1] but f(x)is
not differentiable at x =0 ]-1,1[. Hence, Rolle’s theorem is not satisfied (due to the second
condition).

Q.2. Ifa + b+c=0,then show that the quadratic equation 3ax? +2bc+c=0has
at least one root in ]0, 1].
Ans. Let us define a function f(x)such that
f(x)=ax? +bx? +cx +d.

Here we have f(0)=d and f(1)=a +b +c +d =d. (-a+b+c=0)

Obviously, f(x)is continuous and differentiable in ]0, 1[ (being a polynomial).

Thus, f(x) satisfies all the three conditions of Rolle’s theorem in [0, 1]. Hence, there is
at least one value of x in the open interval ]0, 1[ where f’'(x)=0

ie, 3ax? +2bc +c =0 has at least one root in 10, 1].

Q.3. What is the expansion of log(1+x)?
3

n
Ans. The expansion of log (1 + x) is x —x? +% +.n +(—1]"_1 X
n

Q.4. Find the n'? differential coefficient of log(ax + x? ).
Ans, Let y=Ilog(ax i )=log[x (a +x)]=log x +1og (a +x)

Differentiating n times, we get
n n

o =2 Qogx)+ % log (a +x)
dx" dx"

_1" (11" . 1 n—1)u"

x" (x +a)"

1" (-1 {1+ 1 }

x" (x+a)"
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Q.5. Define partial derivative or partial differential coefficient.
Ans. W know that the differential coefficient of f(x) with respect to x is given by
lim Fix k)i , provided this limit exists, and it is denoted by f’(x}or Ll Lf(x]]-
x>0 ox dx
Ifu = f(x, y) be a continuous function of two independent variables x and y, then the

differential coefficient of u w.r.t. (regarding y as constant) is called the partial derivative or
partial differential co-efficient of u w.r.t. x and is denoted by various symbols such as

o o b9

ox ox " .
Q.6. Define homogeneous function.
Ans. Afunction f(x, y)is said to be homogeneous function of degree n, if the degree of each

of its terms in x and y is equal to n. Thus agx” +a;x" 1y +a;x" 2y +... +a,_1 0" +a,y"
is homogeneous function in x and y of order n.

Q.7. lfu=f[y), showthatxa—u+ya—"=0.
X oy " oy
Ans. We have u=f [XJ
X

Differentiating (1) partially w.r.t. x and y respectively, we get

u_n(r)(_2 u_ yofy
=g = )

du  (y)1 ou_y oHfy

d = — | —_— = _—

n oy f(xJ X - yax xf[x]
ou . ou_

Adding (2) and (3), we getx —+ y—=0
ox oy

Q8. IfxY +y* =ab.Findj‘:.

Ans, Let fle, )=x" + y* —a® =  f(x,y)=0.
y-1, X
Therefore, dy__offox__ yx7” +y'logy
d o /oy  xYlogx+x~]
. oz 0z sin0 oz
Q.9. Ifx=rcos0, y=rsin0,z= f(x, y); prove that —=cos0 — - —— —.
ox or r o6
Ans. We have x=rcos® and y=rsin®
= r=x? +y2 and ©=tan! y/x
= B2 cosh.  and im0
ox or r
Putting these values in eqn. oz = oz or + oz %6 =cos0 0z _sing oz

Ox Orox 00 ox or r o
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91 E:Y SHORT ANSWER TYPE L:J/[FH 11D

Q.1. If f(x)=(x-1)(x -2)(x —3)and a =0, b=4, find ‘c’ using Lagrange’s mean
value theorem.
Ans. We have
flx)=(x-1)(x -2)(x -3)=x> —6x% +11x —6.
fla)=f(0)=—6and f(b)=f(4)=6
fb)-fla)_6-(-6) _12 _,
b-a 4-0 4
Also f'(x)=3x? —12x +11 gives f'(c)=3c% -12¢ +11.
Putting these values in Lagrange’s mean value theorem.
f(b)-f(a) = f
b-a
3=3c¢Z-12c+11 or 3¢®-12c+8=0
. _12+v [1644-—96) =2J_rz~3/3_

As both of these values of ¢ lie in the open interval 10, 4[, hence both of these are the
required values of c.

(c),(a<c<b), we get

or

Q.2. Verify Cauchy’s mean value for f(x)=sinx and g(x)=cosx in |:— %, 0].

T

Ans. It can be easily seen that f(x) and g(x) both are continuous on [—2

, 0:| and
differentiable on :| - % ,0 |:
Also, g’'(x) =—sin x # 0 for any point in the interval :| —g, 0 |:

Then, by Cauchy’s mean value theorem, 3 at least onec e :| —%, 0 |: such that

0)- —EJ
() f[ T

_ (=) glk)
g(0) g( 2)

Putting all the values and after simplification, we have

cotc=-1
= c=-x/4.
Sincec =—n /4 lies ] —= /2,0[, hence, Cauchy mean value theorem is verified.
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Q.3. State and prove Lagrange’s mean value theorem.
Ans. Theorem : If a function f(x)is
(i continuous in a closed interval [a, b], and

(ii) differentiableinthe openinterval]a,b[ie,a< x < b,then there exists atleastone
value ‘¢’ of x lying in the open interval ]a, b[ such that

f( )_f(a]=fl(c).

b-a
Proof : Consider the function ¢ (x) defined by ¢ (x) = f(x}+ 4x, =1)
where A is a constant to be chosen such that ¢ (a)=4¢ (b)
ie, fla)+ Aa = f(b)+ Ab or a=-f0izf@) (2)

b-a

(i Now the function fis given to be continuous on[a, b] and the mapping x —» Axis
continuous on [a, b], therefore ¢ is continuous on[a, b].

(ii) Also, since fis given to be differentiable on ]a, b[ and the mapping x — Ax is
differentiable on ]a, b[, therefore, ¢ is differentiable on ]a, b[.

{iii) By our choice of A, we have ¢ (a)=¢ (b)

From (i), (ii) and (iii), we find that ¢ satisfies all the conditions of Rolle’s theorem on

[a,b]. Hence there exists at least one point, say x =c, of the open interval ]a, b[, such that

' (€)=0.
But ¢'(x)=f"'(x)+ A, from (1).

d'(c)=0= f'(c)+A=0
or f'(c)=—A=f(b3_m,from ).
—-a
This proves the theorem. It is usually known as the ‘First Mean Value Theorem of

Differential Calculus’.
Q4. Verify Lagrange’s mean value theorem for the function

f(x)=sinx in [0, ﬂ

Ans. The function f(x)=sin x is continuous and differentiable on R. Hence it is continuous

as well as differentiable in [0, % /2]. Then, by Lagrange’s mean value theorem, there must
exists at least one ¢ in |0, n /2[ such that
f(x/2)-f(0)
422 = 22 2= f'(c). o o |
ey ~TE (1)
Here f(0)=0, f(r/2)=1
f'(x)=cosx = f'(c)=cosc.
Put all these values in (1), we have

1-0 2 1(2
Z _—=C0SC => COSC=— => C=CO0S =
w /2 o b’
Since, 0< 2 /n< 1, therefore the value of ¢ =cos ! [E) lies in ] 0,% [, so the required
T

value of c. Hence, Lagrange’s mean value theorem is verified.
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X
cos —
Q.5. Use Cauchy’s mean value theorem, to evaluate lim | = _|[.
x—1|log{(1/x)

Ans. Let us suppose

f(x) =cos[; nx} glx)=log x

a=x and b=1

Putting all these values in Cauchy’s mean value theorem,
f(B)-fla) _ f'(c)

gb)—ga) g)’

1 . (=
cos ~ —cos ™ ——ESIH(—)
2 2 __ 2

logl-logx - 1/c

a<c<hb

we get x<c<l

Now, taking the limit as x — 1, which give thatc —» 1, we get

[1 J, 1 ’ [1 )
0—cos| —mx ——qmsin| —mc
. 2 . 2 2
im{—— > 73— 1]im
x—>1| log(l/x) c—>1 1/c)
q |
—COs| —mx
N _1
or lim{——— “2l=—"gq wsin—rnc—>lasc—>1
x—1| log(l/x) 2 2
(1 J.‘
cos| — nx
: 2 T
or limJ{ —~— “1=",
x—1 | log(1/x) 2

Q.6. State and prove Cauchy’s mean value theorem.
Ans. Cauchy’s Mean Value Theorem : If two functions f(x)and g(x)are
(i) continuous in a closed interval [a, b],
(ii) differential in the open interval Ja, b[,
(iii) g'(x)= 0 for any point of the open interval ]a, b[, then there exists at least one
value c of x in the open interval ]a, b[, such that
flb)-f(a) _f'(c)
glb)-gla) g'(c)
Proof : First we cbserve that as a consequence of condition (iii), g(b) —g(a) # 0. For if
g(b)—g(a)}=0 ie, g(b)=g(a), then the function g(x) satisfies all the conditions of Rolle’s

,a<c<bh.

}
)]
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theorem in [a,b] and consequently there is some x in ]Ja,b[ for which g'(x)=0, thus
contradicting the hypothesis that g’ (x) # 0 for any point of ]a, b[.

Now consider the function F(x) defined on [a, b], by setting
F(x)=f(x)+Ag(x), (1)

where A is a constant to be chosen such that F(a)=F(b)

ie,

or

fla)+Ag(a)=f(b)+Ag(b)
—a=S0)=J@) -(2)
g(b)—g(a)
Since g(b) —g(a) # 0, therefore A is a definite real number.
(i Now fand g are continuous on [a, b], therefore, F is also continuous on [a, b].
(ii) Again, since fand g are differentiable on ]a, b|, therefore F is also differentiable
on |a,b|.

(iii) By our choice of A, F(a)=F(b).
Thus the function F(x]) satisfies the conditions of Rolle’s theorem in the interval[a, b].

Consequently there exists, at least one value, say ¢, of x in the open interval ]a, b[ such that

F'(c)=0.
But F'(x)=f'(x) + Ag' (x), from (1).
- F'(c)=0 = f'(c)+Ag (c)=0
or —A=f'[c]. -(3)
g'(c)

Q.7.
Ans.

Qa.

Ans.

From (2) and (3), we get
fB)-fla)_ f'{c)
g(b)-gla) g'(c)
Find the second differential coefficient of e3* sin 4x.

Let y=e3* sin 4x.
Then jy =3e3¥ sin 4x +4e3 cos4x =¥ (3sin 4x +4 cos4x).
X
2
AN {€3* (3sin 4x +4 cos4x)}
dx? dx\dx) dx

=3e3* (3sin 4x +4 cos 4x) +e>* (12 cos 4x —16sin 4x)
=e3* (24 cos4x — 7 sin 4x).

lfy=xlogx_1,showthaty,,=(—1]"‘2(n—2]! x—n _ X4m |
X i (x-1)" (x+1)"
Let y=xlogx—_1
x+1
= y=xlog(x-1})—xlog(x+1) (1)

Differentiating (1) w.r.t. x we get

y1=—2 +logx-1)-—% —log(x+1)
x-1 x+1
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=1 +—1 +log (x—1)—1+—1 -log (x+1)
x-1 x+1

=1 s 1 leg(x-1)-log(x+1) -(2)
x-1 x+1
Differentiating both sides of (2) (n —1) times w.r.t. x we get

U (-1, (O -1, G (-2 (D) (n-2)!

Yn =

(x-1)" (x+1)" e eyt
=(-1)"2 (n-2)! _(n-1)+n-1 +(=1"2 (n-2)! —(n-1)-(x+1)
(x-1)" (x+1)"

=y =07 (n—2)!{ e }
(x-1)" (x+1)"

Q.9. If y=sinmx + cosmx, prove that y, =m” [1+(-1)" sin 2mx]'/2,

n
Ans, We know that d—n [sin {(ax +b)]=a" sin (n . g +ax +b]
dx
E T
and [cos(ax +b)]=a" cos| n.— +ax +b
dx" 2
n 2 T T
Therefore, y,, = (sinmx)+ (cosmx)=m" sin| mx+n= |+m" cos| mx+n=
X" dx™ 2 2

1/2

2
=m" {sin [mx +n;)+cos(mx +n:)} ]

X 1/2
=m" |1+2sin (mx +n gj .cos[mx +n gn

=m" [1 +sin (Zmx +nn)/? =m™ [1 +sin 2mx]'/2
=m" [1+(~1)" sin 2mx]'/2.
Q-10. Find the n*" differential coefficients of

(0 A S (ii) x*
1-5x +6x° (x+2)(2x +3)
Ans. (i) Let P N L
1-5x+6x% (3x-1)(2x -1)
2 3

(By resolving into partial fractions)

“2x—1 3x-1
=2[2x -1 —3[3x 1]
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Differentiating, n times, we get
y, =2(-1)" n12" 2x -1)" 1 —3(-1)" n13" (3x -1) "1

=(-1)".n1[2"! (2x—1) ™1 —3™ 3x—1)™ ).

xZ

Tx+2)@x+3)]
Since, the given fraction is not a proper one so, divide the Nr. by Dr., we observe that the
quotient will be 1/2.

(ii) Let y

x2 1, A B
Solet ——— ="+ +
(x+2)(2x+3) 2 x+2 2Zx+3
which gives A=—-4,B=9/2.
4 9 1 =1 7 -1
Therefore, y=-—- + =——4(x+2) " +>-(2x+3) .
2 x+2 2(2x+3) 2 2

Differentiating n times, we get

gy =4 (1) nt(x+2)" +Z (=1)" 12" (2x +3)"

n-1
1P| 22 T4
2x+3)"1  (x+2)*tt
Q.11. Find the n" differential coefficient of x> cosx.
Ans. Let u=cosx and v =x"
= Uy =cos(x +n?ﬂ), vy =3x?
U,_q1 =COS| X +[(n -1) EJ]' vy =6x
( "
U,_p =COS x+(n—2]J, vz =6
\ 2
( n
U, 3 =cos| x+{n—-3) ], vy =0.
\ 2

Now, by Leibnitz theorem, we have
d.l’l

n n I
- Wv)=u, .v+ "Ciuyq.v1+"°Cauy 5.v3+"C3 ¥,_3.V3

dx
n
= d—(x3 COSX)=C0S x+ 7 |53 +"Cy cos X+("—1)E 3x”
dxﬂ 2 2

+7C, cos[x +w) 6x +"Cy cos[x +@)6



30 Exam) Differential Calculus & Integral Calculus B.Sc.-l (SEM-)
=x3 cos| x +™ | =3x2 .nsin| x+ ™™ |-3n (n-1)xcos| x 4+
2 2 2
—-n{n-1)(n-2)sin [x +";)
=[x3 —3n(n-1) x]cos (x +n?n] +[3x2n -n(n-1)(n—-2)]sin (x +n?1t)

Q.12.If y=acos(log x)+ bsin(log x ), show that
X2y + 291 + y=0,

and xzy,,+z +(2n+1)xy,.4 +(n2 +1) y, =0.

Ans. We have y=acos(log x}+bsin (log x). (1)
i y1 =—(a /x)sin (log x}+ (b /x) cos (log x)

or xy1 =—a sin (log x}+b cos(log x). (2]

Differentiating (2) with respect to x, we have
X2 + y1 =—(a /x)cos (log x)—(b/x)sin (log x)

or x? Y2 +x( ==y [From (1]]
or xzyz +xy; +y=0. «[3)

Differentiating (3) n times by Leibnitz’s theorem, we have

D"(x?y;)+D" (1) + D" (y)=0
or (D"yz)-x* +7Cy (D"~ y3)-(Dx*)+"C; (D" ) (D?x?)
+(D"y1)-x+"Cy (D" y1)-(Dx)+D"y=0
n{n-1)
21

or |:.Yn+2 X2 40 Y4 2%+ Vs -2} +[Ypt1 - X +ryy 1]+ y, =0

or xzyn+2 +(2n +1) xy, 1 +[n2 +1) y, =0.

=1
Q13.If y=e™ ¥, show that
(1-x*)ypi2 ~(2n+1) Xy, —(7* +a? ) y, =0.

. -1 1
Ans. We have y=efsinx o g —eesinTx @
2
Vi-x%
ool
= VI et ey " 1-x%)=a? (1)

Now, differentiating (1) with respect to x, we get
25172 A-x2)+ yy? (~2x)=2a% yyy
251 [y2 U -x*) -2, —a*y]=0 [+ 2y; #0]
[y2 @—x*) -2 —a®y]=0. -(2)

U

U
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Using Leibnitz’s theorem, differentiating (2), n times, we get
D" [y2 L -x*)]-D" (y1x)-a’D" y=0
n(n-1)
21

= [J’n+2 (L —x?)+mypq (26)+ % (—21} I R W

= (-x*)ypiz —2n+D) xyn,q —(F +a*) y, =0.

n
Q.14. Ifcos™! (b) log( J . Prove that xzy,,+z +(2n+1)xy,. 41 + any,, =0.

n
Ans. We have cos™! (i) =log [x) =nlog Xeon (log x —logn).
n n

Now, differentiating with respect to x, we get

- A % or y?x? =n? (% - %)

S
bZ

Again, differentiating, with respect to x, we get

2y, 22 + 20y, =—2nlyy,

or yzx2 +yx +n2y=0. (o 2y, #0)

Using Leibnitz’'s theorem, differentiating n times, we get

Ini2X® +"Cy Yrig 2X)+"Cy Y2 (2)+ YniaX +"C1 yy +1° yy, =0
= x? Vasz2 +(n+1) x4 +2'in2y,1 =0.

Q.15. State and prove Maclaurin’s theorem.
Ans. Maclaurin’s Theorem : Let f(x) be a function of x which possesses continuous

derivatives of all orders in the interval[0, x]and can be expanded as aninfinite series inx, then
2
f(x)=F0)+xf [0)+ f"(0]+ +— f 0)+...

Proof : Let us define
F(X)=Ag +Ayx + Ax% + Agx® +... (1)
Let the expression (1) be differentiable term by term any number of times. Then by
successive differentiation, we have
F(X)=A; +24,x +343x% +44,%3 + ...
f'{x)=2.1.A; +3.2. A3x +4.3 A4x2 +...
f(x)=3.2.1.43 +4.3.2 Ayx +...

Pumng . 0’weget ...............................................................................
F0)=4g, F'(0)=A1, f"(0)=2!4,, " (0)=3!4; ...
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Substitute all these values in (1), we get
2

n
i X " x
f(x)=f(0)+xf (0)+?f (0)+... +F ) +...
This is Maclaurin’s Theorem.
x? 3.x%

Q.16. Prove by Maclaurin’s theorem, that e¥™* =1+x+ ~ — F
1.2 1.2.3.4

Ans. Let  fx)=e""* = f(0)=€ =1

F(x)=e""* cosx = f'(0)=e cos0=1

Fr=e%"% (_sin x) +cosx "% cosx

=S¥ [cos? x —sinx] = f"(0)=e° [1-0]=1

" (x)=e%"% [2 cos x (—sin x) —cos x] + &% cos x.[cos? x —sin x]

sinx 2

=e cos x[—2sin x —1 +cos® x —sin x]

=—e’"X cosx[3sin x +sin? x] = f(0)=0

¥ (x)=—e%% cos x[3 cos x +2sin x cos x]+e % sin x [3sin x +sin? x]

—[3sin x +sin? x]cos xe5"* ,cos x

= fY(0)=-

Putting all these values in Maclaurin s theorem given by

flx)= f(0]+xf'(0]+ f"(0)+ f'"(0]+—f"’(0)+

A 4
i b'¢ 3x
we get, eS¥ =1 x4+ —

1.2 1234

Q.17. Expand sin x in powers of (x — % n ) by using Taylor’s series.

Ans. Let f(x)=sin x. We want to expand f(x)in powers of x —;n.
We can write f(x)=f [%n +(x —%Tc]].
Now expanding f [;n +(x —;n)] by Taylor’s theorem in powers of (x —;n), we get
FO= L m+ =) ml=fle /D +(x = 1) F (=/2)
1 1 2 o 1 1 3
+a(x—£n] if [n/2]+§[x—§‘n:] (e f2)+... (1)
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Now f(x)=sin x. Therefore f(x /2)=sin(x /2)=1,
f'(x)=cosx giving f'(r /2)=cos(n /2)=0,
f"(x)=-sinx sothat f"(n /2)=-sin(x /2)=-1,

f" (x)=—cosx so that f"'(x /2)=—cos(n /2) =0,

F®) (x)=sinx so that f™ (x /2)=sin (n /2) =1, etc.
Substituting these values in (1), we get

. 1 1 1 .2 1 1 .3 1 1 .4
sinx=1+(x--n)-0+ - (x——n)*-(-1)+ - (x—=-=w)" -0+ - (x—-m)" -1+...
( 2 ) 2!( 2 y-en 3!( 2 ) 4-!( 2 )

1 1 2 1 1 .4
——(x-—=n)+—(x—-—=m)" -1—...
2!( 2 ) 4!( 2 )

X
Q.18. Expand by Maclaurin’s Theorem . as far as the term x3.
l+e
X X
Ans. Let y=28 Lt 1., 4
1+e*  1+e” 1+e*
0
e 1
Then (¥ = =
1+e? 2
e* e* 1
yy =0+ = : =y(-y)=y-y*
1+e*)* ([+e¥) (1+e¥)
1 1_1
= . B
U do S
1 11
Now =y -2 = =—-2.-.-=0
y2=y1-2yy1 = (2)o i e
Y3 =y2 -2¥% -2y,
1 1
= (33)g=0-2|=| —0=—=andsoon
4 8
Putting all these values in Maclaurin’s series, we get
e¥ 1 1 x2 _ (1 1,x_1 3
=—4x.—+—0+—| = |+...=2—+———
1+eX 2 4 21 31 8 2 4 4

Q.19.1If j"(x]=x3 +8x% +15x —24, calculate the value of f

8
[ J by Taylor’s
theorem.

Ans. By Taylor’s Theorem, we have

flx+h)= f(X)+hf'(X)+—f"( ]+ f"'[X)+ ~(1)
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We want to find f E e, f 1+i
10 10

Putx=land h= 110 in (1), we get

f[llj f[ ] f(1]+—f'(1)+— —f"(] 1)3 .. 12

10 02 2! 3! (10
Now f(x)=x +8x% +15x —24 = f)=0
f'(x)=3x% +16x +15 = fr1)=34
f(x)=6x+16 =  fr{1)=22
f(x)=6 = f"@)=6
F¥(x)=0 = fY0)=0

Put all these values in (2], we get

fliet)o+tzas 1t 1 _34,04140.001=3511
10)" 10 100 1000

Q-20.Ifu =log(x3 + y3 + z3 —3xyz), show that
ou ou du 3 8 8 oY -9
—+ 4+ = —and | —+ _+_ | u=— .
ox Oy 0z x+y+z ox oy oz (x+y+z)
Ans., Wehaveu =log(x3 +y3 +23 —3xyz).
. Ou _ 3x2 -3yz ou _ 3y —3zx dal 322 -3xy

3+y g = —3xyz ay x3+y3 +z3—3)grz.

ox x° +y 3 Lzt 32gzzay X

_6_u+6_u+a_u=2(x +y2 +22 —yzZ —2Zx —xy)
ox oy 0Oz x3+y3+23—3)grz

= 3[)(2 +y2 +z2 — yZ —zX — Xy) _ 3 (1)
(X+y+2z)(x% +y? +2% —yz-2x -xy) Xty+z

8 & oY (o .8 oYo o6 o
Now, | — + + | u=| —+—+ || — 4+ +—
[ax oy BJ [ax oy az][ax ay az]
o 3
S - S ’ F 1
(ax ay 62](x +y+z) [From (1]]

6 1 +2 1
ax x+y+z 6y X+y+z) oz\x+y+z

-1 -1 B -9
|:(x +y+z)2 [x+_y+z)2 +(x+y+z]2 } _(x +y+z)2.
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Q.21.If0 =t" e_'z/‘“, what value of n will make l i [rz 69] @ ?

rZ or or, ot
2 2
Ans. We have @=t" e T /4 _ar =T n-1 o/
or 4t 2
2 @=—1r3 en-1 ,—r /4c_
or 2
o(,208 =_£tn—1 e/ _1 3 n rPpae (21
or or 2 2 4¢
3.2, /4t+ 4 o2 e—r2/4‘t.
2 4
108(28)__ 3.1 %4 1 202 24
r2 or or 2 4
2
Also B _ppn-tgrtiae ongrtiar TT _punt e 1202 vt e
ot 42 4
Now 1 ¢ 2 00 69
2 ar or) ot
2 2 2 2
- _§tn—1 o T/ +1r2 (n2 g riiat o n-1 TP 4t + P2 g2 ot 4t
2 4 4
2 2
= —gt"_l e /M _penl g TR forall possible values of rand ¢
3
= n=—=-.
2

Q.22. State and prove Euler’s theorem on homogeneous functions.
Ans. Euler's theorem on homogeneous functions : If ¥ is a homogeneous function of x

and y of degree n, then x ] +ya—u
ox oy

Proof: Since u is a homogeneous function of x and y of degree n, therefore u may be put

in the formu =x" f (y / x). (1)

Differentiaﬁng (1) partially w.r.t. ‘X', we have

X2 x"f /AU 0™ +x [ /01y 14
xzz=nxnf(yIX)—X"' v F ). -(2)

Again differentiating (1) partally w.r.t. Y, we have
aa; =Sy rxl=x" [f’(y/X)] =" f'(y/x).
y o=y 1) -(3)
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Adding (2) and (3), we have
du ou

y—+y—=nx"f(y/x)=nu [From (1)]
oy "y
du ou
Hence X +y =nu.
ox y

This proves the theorem.

tlae)le) Bl LONG ANSWER TYPE J¢1%)/ =) 1

Q.1. State and prove Rolle’s Theorem.

Ans. If a function fdefined on [a, b]is such that it is
(5] continuous in the closed interval [a, b],
(ii) differentiable in the open interval Ja, b[ and
(i) fla)=f(b)

then there exists at least one value of x, say ¢, (a <c<b) such that

f'(e)=0.
Proof : Since, the function f(x)is continuous on [a, b]
= f(x)is bounded [ Every continuous function is bounded]
= f(x) attains its bounds [+ A function, which is continuous on a

closed bounded interval [a, b], then it attains

its bound on [a, b]]
Let M and m are the supremum and infimum of f(x) respectively.

Now there are two possibilities

({)M=m (ii) M = m.

(i) If M = m, then obviously f(x)is a constant function, and therefore its derivative is
Zero, Le.

f'(x)=0Vxe]a,bl.

(ii) If M # m, then atleast one of the numbers M and m must be different from the equal
values f(a)and f(b)

Let us assume M = f(a).

Now, since, every continuous function on a closed interval attains its supremum,
therefore, there exists a real number c in[a, b] such that f(c)=M.

Also since f(a)=m= f(b).

Therefore c # a and ¢ # b, this implies thatc € ]a, b[.

Now, f(c)is the supremum of fon [a, b]

% f(x)< fle)Vxe]a,b] .[1)
(By the definition of supremum)

In particular, flce—-m)< f(c) h>0.

. fle —h)h— O 2)

Since f'(x)exists at each point of ]a, b[, and hence, f’ (c) exists.
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Hence, from (2] Lf'{c)=0. «(3)
Similarly from (1) flc+h) < f(c), h>0.

Then by the same arguments
Rf'(c)<0. .(4)
Since f(x)is differentiable in Ja,b[ = f'(c) exists
= Lf'(c)=f'(c)=Rf"(c). -(5)
Now from (3), (4) and (5) f'(c)=0.
Similarly we can consider the case
M=fla)m.
2
Q.2. Discuss the applicability of Rolle’s theorem to f(x)=1log {ﬂ}, in the
(a+ b)x
interval [a, b],0<a< b.
a“ +ab | _ 2 b? +ab
Ans. Here f(a)=lo g|:( +b)a:| =logl=0, and f(b)=log [(ﬂ +b)b] log1=0.
Thus f(a)=f(b}=0.
Also Rf (x) M hm log w - log xz +ab
—> h—->0h (a+b)(x+h) {a+b)x

— lim 1 (x +2xh +h? +ab)(a +b)x
'Hﬂh_ (@ +b) (x +h) (x% +ab)
i (x? +2xh+h2+ab]
= lim —|log
3 2
= lim 3 log{1+ZXh+h } 1+h}]
h—>0h x° +ab
r 2
—him 1| BRI R L@ [clegen=y-L2
h—>0h| x2 1gp X 2
_ 2 1
x? +ab X
2
Again Lf'(x) = lim LR Fx) | _ L f—oebh (_h)+... .
h—0 —h h—>0(—h) x2 +ab X
replacing h by —h in (1)
_ 2x _1
x?+ab X

Since Rf' (x) =Lf'(x), f(x)is differentiable for all values of x in[a, b] This implies that
f(x) is also continuous for all values of x in [a, b]. Thus all the three conditions of Rolle’s
theorem are satisfied. Hence f'(x)=0 for at least one value of x in the open interval ]a, b[.



38 Exam) Differential Calculus & Integral Calculus B.Sc.-l (SEM-)
Now f'(x)=0 = 2% _1_por2e? —(x% +ab)=0 or x%=ab or x=v (ab),
x“+ab X
which being the geometric mean of a and b lies in the open interval ]a, b[. Hence the Rolle’s
theorem is verified.

Q.3. State and prove Taylor's theorem.
Ans. Let f(x)be a single valued function defined on[a,a +h] such that
(i) All the derivative of f(x)}upto (n- 1) are continuous in[a,a +h]

and (i) f" (x)existsin a<x<a +h

even there exists a real number 9 0< 0<1, such that
hﬂ—l

f@+m=f@)hf @+ SIS TS L D) i

(—1)! pn-1)! o

where p is a given positive integer.
Proof : Since f 71 exists, all the derivative F A, 71 exist and continuous on
[a,a +h], consider a function ¢ defined on [a,a +h] such that

& ()= F(x)+(@+h- x)f'(x)+(‘”" X ).

(@ +h—x]
(n-1)!

where A is a constant to be determined such that

¢ (a+h)=¢(a)

f"—l (X)+A(@+h-x)*  .(1)

n-1
Now  ¢(a)=fla)+hf @+ f"(a) (" o @ an
n—1ji
and o (a +h)=f(a+h) , )
fla +h]=f(a)+hf’[a)+h— fr@a)+...+ f'"_1 [a)+Ah'°. -[2)
2! (n-1)!

Now

(i) IEnl’ N it being all continuous on {a,a +h)

= The function ¢ is continuous on[a,a +h],

(ii)  Similarly the function ¢ is differentiable on ]a,a +h[, and

(i) ¢(a+h)=¢(a)

Thus, the function ¢ satisfied all the conditions of Rolle’s theorem and hence 3 a real
number 6 (0< 8 <1) such that

¢’ (@ +6h)=0.
Here ¢’ (x)=f'(x) +[-f"(x) + (@ +h—x]) f" (x]]
+%[—2 (@a+h-x)f"(x)+(a+h —x)2 Frx]]+...

n—2 rn-1
+( 1)'[ (n-1)@+h-x)"* f (x)

+(@+h-x)""1 F(x)]-Apla +h-x)PL
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n-1
= &H_(z:l);)' fl(x)-Ap(a+h- x]p -1 [Other terms canceled in pairs]
hn—l (1 _ e )n—l

T f™ (a +6h) - AphP! (1-0)P1

0=¢' (a +6k)=

A= KPP 1-9)y"?
p({n-1)!
Now, putting the values of A in (2), we get

= f" (@ +6h),h#0,0 #1.

2 n—1 n _pynp
fla +h)=f(a]+hf'[4:1]+h—f"[a)+...+L f"‘l(a]+—h i.=6) f" (a +06h).
2! (n-1)! p(n-1)!
Q.4. Find the n'™" differential coefficient of tan~1 ¥,
a
Ans. We have
-1 X a a
=tan " — = = = .
Y a N=T. 7 r+eilix—1a)
Let us suppose
a A B i ; ;
- = —+ - (Using partial fractions})
(x+ia)(x —ia) (x+ia) (x—ia)
= a=A(x-ia)+B (x +ia).
To find the value of 4, put x =-ia
1
we get A=——
B 2i

and for B, put x =ia, which gives B =% therefore, we have
i

1 1 1 1 iy iy Y g
=l |= [x-ia) ™" —(x+ia)"].
2i| x—ia x+ia 21

Differentiating (n —1) times, we get
Yn = % (0" (-DIx—ia)™ - (1" (n-1)!x +ia)™]

n-1
=W[(x—m)‘" —(x+ia)™].

Putting x =r cos0 and @ =r sin 0, we have
Yn =%[r‘" (cos® —isin@)™ —r ™ (cos® +isin0) ™"
_p*? :(n —1)!
2!
=%r"” .2i sin n@

r ™ [(cosn® +i sin n8) —(cosnb —i sin n6)]

[ sin (—nB)}=-sin no]
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=(-1)"1.(n-1)\.r " sinn@

(1) (-1 !( g 9) sin n@ |:sincer = L:|

sin sin@

=(-1)""1 (n—1)1a " sin™ 6 . sin né.

Q.5. State and prove Leibnitz's theorem.
Ans. Leibnitz's Theorem : This theorem helps us to find the nth differential coefficient of
the product of two functions. The statement of the theorem is as follows :

If u and v are any two functions of x such that all their desired differential coefficients

exist, then the nth differential coefficient of their product is given by

D" (wv)=(D"u)-v+"Cy D" u-Dv+"Cy D" 2 u-D?v+...
e+, D" T u.-D'v+...+u D",
Proof: We shall prove the theorem by mathematical induction. By actual differentiation,

we have

D{uv)=(Du)-v+u-Dv. (1)
From (1) we see that the theorem is true forn=1.
Now assume that the theorem is true for a particular value of n. Then we have

D"(wv)=(D"u)-v+"C; D" Y u-Dv+"Cy D" % u-D?v +...
+2C, D" u-D"v+"C, g D" D"y u-D. .(2)
Differentiating both sides of (2) with respect to x, we get
D™ wv)={(D"**u)-v D"u-Dv}+{"C,D"u-Dv+"C; D" L u-D?v}
{7y PP -DPu4 UGy DR - DR
#{E, DT gy, DT P Y
+{"Cpp D" u- D" v, D" T u D" Y4l
+{Du D"v +u D"y},
Rearranging the terms, we get
D" @) =(D""u) v+ (1 +"C1) (D"u Dv) +("Cy +"C3) D" L u - D?v
#o+(PC, +"C )P u- D )+ +u D™ v, L(3)
But we know that, *C, +"C,,. =""1C, ;.
Therefore 1+"Cy ="Cy + "€, ="1€;,"Cq +"C, ="1C,, and so on.

Hence (3) become
D" wv)=(D"t u)-v+"IC, (D" u)-Dv + "IC, (D" u)- (D) +...

+M e D" D" v s ru. D™y L (4)



UNIT-II

41

From (4) we see that if the theorem is true for any value of n, it is also true for the next
value of n. But we have already seen that the theorem is true forn =1. Hence it must be true for

n =2and soforn =3,and so on. Thus the theorem is true for all positive integral values of n.

Q6. Ify=[x+V(1+ x2 )™, find the value of then differential coefficient of y for

x=0.
Ans. Here y=[x +V (1+x2)]".

V1= m[x+\/(1+x )]m_1 {1+:L & ]

2 y(1+x%)
v -
Tl e e
or y1 [1+x )J-m y2 =0.

Differentiating again, we get
2
2y1 72 A +x%) 4224 —2m yy; =0

or yz W+x*) 20 ~m*y=0,
cancelling 2y, , since 2y; #0.
Again differentiating (3) n times, we get

Yniz W+x%)+7C1 . 2005,1 +"Co .2 +psq +"C1 - Yy —m° yy =0
or Ynez A+22)+ 20 +1) 2,1 +(° -m?) y, =0.
Putting x =01in (1), (2), (3) and (4), we have
o =1, (r1)o =m, (32)o =m” and (¥n42)o + (% —m*). ()0 =0
ie, (Upszdo=0m* =n*).(n)o-
Case I : When n is odd.
Puttingn=1,3,5,7,... in (5), we get (y3 )o =(m2 —12)(y1 Yo= (m2 —12).m,
(¥5)o =(m* 3%} (y3)o =(m* —3?)(m* —1%).m, and so on.
Hence when n is odd, we have
Wndo ={m® -(n-2)°} (m* - (n-47*}... (m* -3*)(m* -1%)m.
Case Il : When n is even.
Puttingn=2,4,6,... in (5), we get

ado =(m® -2%)(33)p =(m? —2%).m?,

(s )o =(m* —4%) (¥4 )o =(m* —4*)(m? —2*).m*,and so on.
Hence when n is even, we have

o ={m? —(n—-22} {m? - (n-4)*}... (m* -22).m?.

(1)

(2)

-(3)

(4

(5)
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Q.7.
Ans.

or

Q.8.
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Obtain by Maclaurin’s theorem the first five terms in the expansion of

log(1+sinx).
Let f(x)=log(1+sinx) = f(0)=0
Then f(x)=_ 0% = f(0)=1
" 1+sinx
e cos® x __ Sin¥ .. 2
frx)= 1+sinx (1+sinx]2_ 1+sinx LF' @l
=5 Fr@=-1FOF =—)? =-1
£ ()= - cos.x sinxcosx ~2f(x) f" (%)
1+sinx (1+sinx)
freE=-fe- sinx 1)

=—f’(XJ+f'[X)[—f"(X)—(f'(XDZ]—Zf'(XJ (%)
frE)=-f &) -1 P -3 x) ' (x)
= F7(0)==f () -[f'OF -3f(0) f (0)=-1-(1)° -3(1)(-1)=1
Y E)==f"(x)-3Lf' (I f"(x)-3[F" () =31 (x) f" (x)
Y =-f0)-3[f OF £"(0)-3[f" O -3 (0) £ (0)
=—(-1)-30P (-1)-3(-1% -30)@)=-2
U )=-f"@)-3[f P £ x)-6f ([f" (x)P
—9F" (x) f" (x)-3f (x) f (%)
= FU == f"(0)-3[f (OF f"(x)-6f x)Lf" )
~9"(0) £ (0)-3f'(0) £ (0)
=5

Now by Maclaurin’s theorem (ﬁrst five terms)

flx)= f(0]+xf'(0]+ f"(O) f"'(O) f"’(ﬂ) 7f (0

x? x3 2xt 5x° x? x3 x* x5
=0+x-"—+"— -+ =x-"_+= - _+°
21 31 4! 5! 2 6 12 24
Use Taylor s theorem to prove that
sin 26
tan™ (x+h) tan™ x+hsm9T—[h 9)2

3 sin 30 n Sinno

+(hsing) —o.+{~1)"1 (hsin0) e

where 8 =cot_1 X.
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Ans. Let y=f(x)=tan"! x
Then = L 1 =l|: 1 1 }
14x%2 [(x+D(x-0) 2i|x-i x+i
1 P P
or =5 lGc-1) @+ il

Differentiating (1), (n —1) times, we get
In =21_[(—1)"‘1 (- x-N7" --1" (-1 +07"]
i

L
or Yn = (I)Zl(nl)' [(x — i)_" _ (x _H-)—H ] (2)

Now put x =r cos0,1=r sin @ in (2). Then

n-1
¥, w r ™ [(cos® —isin0)™ —(cos® +isin8)™]
f]

=(_1);i(n_1)! r " [(cosn® +isin n6) —(cosnO —i sin n)],
by De Moivre’s theorem
_(0)" (-1
- 2i
=(-1)"1 (n-1)!sin™ 0 sin no. [+ r~ 1 =1/r=sin0]
Hence f®(x)=(-1)"" (n-1)!sin” O sinnd,
where cot8=x,1e,0 —cot 1x
Puttingn=1,2,3,..., we get
f'(x)=sin0-sin 9, f""(x) =—sin? @ sin 26,
" (x) =21sin? 0 sin 36, and so on.
Substituting these values in Taylor s series

flx+h)= f(XJ+hf’(X)+ f"() f"'(x)+ + f‘"’ (x) +...

r.2isinn®

2
we get tan~? (x +h]=tan_1 x+hsin0-sin6 —%sin2 0 sin 20

3 I n
+h—'2'sin3 fsin36 —... +h—1 (-1)" (n-1)!sin™ B sinnd +...
! n!

2 sin 20

or tan 1 (x +h)=tan ! x+.hsin0-sulle —(hsin®)

sin nb
+

+(hsin8)? .S“‘:e oo+ (=17 (hsinOY" .
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Q.1. Define tangent and normal.

Ans. Tangentand Normal: Let P be a given point and Q be any other point on it. Let Q travel
towards P along the curve. Then, the limiting position PT of the secant PQ is known as the

tangent to the curve. Theline PS through P which is perpendicular to the tangnent PT is called
the normal of the curve.

T

Tangent

Nomal )

Q.2. Define equation of the normal.

Ans. Equation of the Normal : The normal to a curve at a given point is a line perpendicular
to the tangent at that point and passes through the point. The slope of the normal at point
P (x4, y, ) will be negative reciprocal of the slope of the tangent.

Hence, the slope of the normal at (x,, y, }=-

dyy [dx;
.. the equation of the normal at P (x,, y1)is y—y; =— D (x—x1)
dy; /dxq
Q.3. Find the pedal equation of r™ =a" sinn®.
Ans. Hence, the given curve is r™ =a” sin né. (1)
Taking logarithm of both the sides of (1), we get
nlogr=nloga +logsin nb. w(2)

Differentiating w.r.t. 0, we get
n dr __cosnd

r doe sin n6

=ncotn®

r
Also, p=rsing = p=rsinnd,

1 dr
= cotdp =—.— =cotnb. =nb.
¢ 40 ]
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Q4.
Ans.

Q.5.

Ans,

or

or

Q.6.
Ans.

Now from (1) and (3), we have sinnf =

T

Putting the value in (1), we get pa” =r™*1,

Find the angle at which the radius vector cuts the curves L =1+ e cosb.

r
Here, the given equaticn of the curve is 5 =1 +ecosb.
r
= logl—logr=log(l+ecosB)
Diff. w.r.t. 0, we get —l.d—r=¥(—e sin 0).
r do (1+ecosB)
cot¢=1.d—r= esin
r dd 1+ecosb
= =l TS0 R L Ec0sE
esind esin®

If the tangent to the curve xUZ 4 y1/ 2 _gl/2 5t any point on it cuts the
aces OX, OY at P, Q respectively, prove that OP + 0Q=a.

1/2 1/2
The curve is (x] +(yJ =1 «{1)

a a

The co-ordinates of any point (x, ¥) on (1) may be taken as
x=acos* t,y=a sin ¢.

d—x =—4q cos3 tsint and d—y =4q sin3 t cost.
dt dt

Ldy sin? ¢
dx  cos’t
The equation of the tangent at the point ‘¢’ to (1) is

sin2 t

(Y —a sin4t)=— (X —a cos* t)

cos“ t
Xsin? ¢ +Y cos? t =a sin? t cos? ¢ [cos2 t +sin? t)
Xsin? t +Y cos? t =asin? t cos? ¢. il 2]
Now (2] meets OX where Y =0 i.e, where
Xsin? t=asin? tcos® t or X =acos? t.

Therefore OP =a cos’ t.
Similarly, 0Q=a sin? .
Hence OP+0Q=a cos? t +asin? t =a.

Find the asymptotes of the curve y2 =4x.
The equation of the curve is y2 —4x=0.
Putting y=m and x =1 in the highest i.e, 2nd degree terms, we get ¢, (m) =m?Z.
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Solving the equation ¢, (m)=01ie, m? =0, we getm=0,0.
Also putting y =m and x =1 in the first degree terms, we get ¢4 (m)=-4.
Now c is given by the equation c¢’'; (m)+d4(m)=01ie, 2mc —4 =0.
If we putm =0 in this equation, we get ¢ =. Hence no asymptote exists.
Q.7. Define non-algebraic curve.
Ans. A curve in which there are some terms involving cosine, sine etc., is called non-
algebraic curve.
Q.8. Find the radius of curvature for the curve whose intrinsic equation is

s=alogtan[£+%

Ans. Wehavep=j—s=d;SECZ (£+£].1
v tan E+E g2 2
4 2

a a a
= = =asecy.

2sin| *+ ¥ lcos| T+ ¥ | sin E+\|; cosy
4 2 4 2 2

Q.9. Find the radius of curvature at the goint (p,r)on the ellipse
1 1 1 r

=+ .
pZ aZ bZ aZ bZ
Ans. Differentiating the given equation with respect to r, we get
_2dp__ 22 dp_ 1P’
pdr  g?p? dr 42p2
dr a’b® a’p?
Hence p=r—-=r. = .
dp r p3 p3

(.10. Find the nature of the origin on the curve at yz =x1 (Xz —a? ).
Ans. The given curveisa*y? =x* (x? -d?). (1)
Equating to zero the lowest degree terms in the equation of the curve, we get the
tangents at the origin as a 4 y2 =01ie, y=0, y=0are two real and coincident tangents at the
origin.
Thus the origin may be a cusp or a conjugate point.
From (1), y=2? 7a® )V (x% -a?).
For small values of x #0, +ive or -ive, (x2 —az) is -ive Le, y is imaginary. Hence no

portion of the curve lies in the neighbourhood of the origin. Hence erigin is a conjugate point
and not a cusp.

Q.11. Write the definition of Evolute.

Ans. The evolute of a curve is the envelope of the normals to that curve. In other words, the
locus of the centre of curvature of a curve is called evolute for that curve.
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Q.1.

Ans.

then,

or

or

Q..

Ans.

and

e ]'E:Y SHORT ANSWER TYPEJIZ5(:1'D)

Find the equation of the tangent and the normal at the point ‘t’ to the
cycloid x =a(t + sint), y=a(1—cost).

Here, we have x=a(t +sint), y=a(t -cost)
d—y=a[1+cost). d—y=a sin ¢
dx dt

o, dx dx/dt a(l -
x dx /dt a(l+cost) ZCOSZ(EJ

. 2sin [%} cos(%)
dy dyfdt  asint =tan(tj

The equation of tangent at ‘t’ point is
y—a(l-cott)=tan (;J [x —a (t +sint]]

= y —2asin® L =(x —at)tan Y| _asint.tan| &
2 2 2

_zasin? (£ )= x - ) _sasin? [t e ¢
= y—2asin [ZJ (x at]tan[zj 2a sin [2] = y=[x at)tan(z}

Again the equation of the normal at the point ‘t’ is

y—a({l-cost)=— {x—a(t+sint)}
tan ¢
2
(y—2a sin® ;t)tan;t=—x+a (t +sint)
x+ytan;t=a (t +sin ¢ +2sin® ;ttan;t).

Find the angles of intersection of the parabolas y2 =4ax and x 2 =4by.
The given curves are yz =4ax, wiil]

x% =4by. (2)
Solving (1) and (2], we get on eliminating y

x* =64ab®x or «x [x3 —64ab? )=0.
3 x=0 and 4a'/ %5,
Substituting these values of x in (2), we get
y=0for x=0and y=¢l-ﬁ'2/3 b1 for x =423 p%P,

Therefore (0, 0) and (4a 13 p2/3 s 4g%3 p1P3 ) are the two points of intersection of (1)

and (2).
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Differentiating (1), we get 2 yd—y =4qie, 4y = 2_a_

dx dx y

Differentiating (2), we get 2x=4b & ie, & _ L.
dx dx 2b

Angle of intersection at (0, 0).
)4 of (1) at(0,0) = and L of (2) at (0, 0) =0.
dx dx

. The angle of intersection at (0, 0) is 90°.
Angle of intersection at(4-al/3 b2/3,4azl3 b1/3).
all
25173
1/3

sinfl Y of (2) at (4 23,42 p13y =22

dx plf3

Therefore if § is the acute angle between the tangents to the two curves at the point

(4a' b2 4a*P b3}, then

sy of (1) at (4a'/3 p?/3 40?3 p113)=
X

223 g3
13 . 1/3 1/3 ;1/3
O=tanl| 2" 2b°" 1 2b1 =tan~! —3a2 7 b TR
i, 20 e 2@ +p%3)
pt/3 213
(Q.3. Show that the pedal equation of the ellipse
XXy gl 1,1 rf
aZ b2 p2 a2 b2 a2b2
xZ yZ
Ans. Here, the equation of the curveis = +<_ =1.

a? b

Letx =a cost, y=bsint.
d—x=—a sin t, d—y:bcost == d_y:_M_
dt de dx asint
Therefore, the equation of the tangent at ‘t’ is
Y -bsint =_bc?st (X —a cost)
asint

= ab-bcost. X —asint.Y =0. sl 1]
Since p denote the length perpendicular from (0, 0) to (1)

ab

p =

\/az sin? t +b% cos? t
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2 . 2 2 2
5, iz _a” sin t2+12) cos“ t -(2)
a‘h

=

2 2

Now, r? =x? +y2 =a? cos® t +b? sin? t =a® +b* —a? sin? t —b? cos? &. w(3)
From (3) a? sin? t +b? cos® t=[¢12 +bz]—r2
Therefore, from (3), we get
1 _@ bt 11
pz a’p? a2 B2 alp?
Q.4. Show that the parabolas r=a /(1+cos0) and r=»b /{1-cos0) intersect
orthogonally.
Ans. The given curves are
r=a/(1+cos0) w1
and r=b/(1-cos0). -(2)
Taking logarithm of both sides of (1), we get
logr =loga —log (1 +cos9)
Differentiating both sides w.r.t. 6, we get
.1 1
1d_r=_[_sine)=251n£900550 1

1 =tan = 0.
r do 1+cos0 2 cos? 59

1 r2

cotdy =tan%9=cot(%n—%9) or by =r/2/2-0/2

1 1
Hence =—qn——6.
b1 i -
Again taking logarithm of both sides of (2), we get
logr =logb —log (1 —cos ).

Differentiating w.r.t. @, we get

LiF  —&li0 —Zsinchosle 1
il = 2 i =—cot=0.
rdé 1-cosO Zsinzie 2

cotdy =—cot%6=cot[1t—%9] or o¢p =n—%9.

Hence b, =n—19.

2
: ; 1 1 1 1
Therefore angle of intersection =¢4 ~ ¢, =(n - 5 0)- (E & 3 0)= 2 .

Thus the two curves intersect orthogonally.
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Q.5. In the cycloid x =a(t + sint), y=a(1-cost), prove that p=4acos ;
Ans. We have x=4a(t+sint) = t:tt:a (1+cost)

y=a(l—-cost) = %:asint

s dy _dy/dt _ asint =Zsmt/2cost/2=tant/2_
dx dx/dt a(1+cost) 2cos’ t /2

dx? dx dx dx —2° '

1 t 1
“sectt.— = ec4

2 2 a[1+cost) 4-a
e
[1 _{d_y) ]
2 dx

Now, putting the values of z and d—j’ inp=

dx dzy

dx?

[1+tan t/2]3/2 4-asec t/2 _

Lsec t/2 sec t /2
4a

We get =4q cost /2.

y 2.2

5 =1 radius of curvaturep =
b

Q.6. Prove that for the elli se — + bein
p P E
a?

the perpendicular from centre upon the tangent at(x, y).
2
Ans. Wehave* +7 =1

a® b?
2 2 2 | y- XY 4
= d—y=—bxanddy= b dx |___b :
dx iy e gB E a2y

Let (@ cos0,bsin 0) be any point on the ellipse. The equation of the tangent at this
point is
—bcosO

y—bsin0 =
asin@

(x —acos®) or bxcos®+aysin® —ab=0. sl Z)

We are given that

p =perpendicular from {0, 0) to the tangent (2)
ab

or p=-
\/bz cos? 0 +a? sin? ¢

-(3)
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Now the radius of curvature p is

27/ 4.2
1+[dy] a’y? g0 %
dx ﬂ4yz (a4yz +b4x2)3/2

d’y -b* ~a*p*
dx?
Then p at (a cos9,bsin0)is

_ (a‘lb2 sin? 0 +b*a? cos? 9)3/2 __ (a2 sin? 9 +b? cos? 9]3/2

p=

apt ab
3
__[(zab/p)y [Using (3)]
ab
5 =a2b2
p’
(Q.7. Show that for the cardioid r =a(1+cos0),p= z V(2ar).
Ans. The curveisr =a (1 +cos0).
2
dr =—asin® and La =—a cos0.
do do?
Now p= {r? +(dr /d0)* }*/?
r? +2(dr /d8)? —r (d?r /d0?)
_ {a2 (1 +c059]2 +a? sin? 9}3/2
a? {1 +cos 9]2 +2(—asin 9)2 —a (1+cos8)(—acosB)
3/2
[4(12 cos? l6 +4a? cos? 10 sin® 19)
_ 2 2 2
a? +2a? (cos2 0 +sin? (-)]+3a2 cosO
(4-(12 cos® 19]3/2 [c:os2 10 +sin? 16]3/2 8a? cos® 1(5)
= 2 2 2 = 2 =|:4_a} cosle.
3a? (1 +cos0) 6a®cost 1o L3 2
21 1
But r=a(l+cos0)=2acos 59. cosEB:\/(r/Za].

Hence p =430 |:2r:| =§\f (2ar).
a
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(Q.8. Find the radius of curvature at the point (r, 6) of the curve

2_ 2
0=Y" "7 _cost (EJ

Ans. The given equation is

[2 2
0 o Uil —cos ™t (E]
a 2

do 11 2r 1 ( aJ
= o + e
dr a 2 Jrz _a2 Jl_(a /r]2 r
_ r B a _ r? —a? _ r? —a?
a \/az -r? r\/rz —a® aryr? -a® &
— dr _ ar (1)
do r2 _ g2
Again, differentiating w.r.t. 9, we get
( r? —az) a-—ar i
dzl"_ 2Vr2 g2 dar
de? r? —a? do
2.2 2 4
_a@*-a")-ar® ar __ a’r 2]
("2 —02)3/2 r? —a? (7'2 —02]2
91372
2
do
Hence p= 5 5 «[3)
r? +2 il —rd—r
do do?

Using (1) and (2) in (3) and then simplifying, we get
_re? —a®)'/? _(r? —a2)/2
76
Q.9. Find the envelope of the family of circles x2+ y2 —2ax cosa —2ay
sina =c*, where o being the parameter, and interpret the result.
Ans. The equation of the family of circles is

x? +yz —2ax cosa —2aysina =c2. «f1]
Differentiating (1) partially w.r.t. a, we get
2axsina —2aycosa =0 or xsina - ycosa =0 w(2)

Eliminating o between (1) and (2), we get
4a? (xsina —yc:osm]2 +4a® (xcosa + ysin a)z =0+(x2 +y2 —cz]
or 4a? (xZ +y2)=(xz +y2 —cz)z.
This is the required envelope.

2
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Interpretation : The equation of envelope can be written as
(x2 +y2 )2 —(4az +2c2)(x2 +y2)+c"‘ =

It is quadratic in [x2 + y2 ) so solving, we get

2 2 2(2a2 +c2)i\/4(202 +c2)z —4c*
xX“+y° =
2
=202 +c? +2a \/cz Fg® =(\/az e J_ra]Z.
Thus, the equation of the envelope contains two circles with centred at (0, 0) and radius

\#az +1!.'2 *a.

Q.10. Show that the evolute of an equiangular spiral is an equiangular spiral.
Ans. The pedal equation of an equiangular spiral is

p=rsina 1)
so that L =sin a.
dr
dr 1
p=r—=r.———=rcoseco. Or p=r cosecq. 74|
dp sina

Let(p’, r' )be any point on the evolute corresponding to the point{p, r)on the curve (1).
Then we have,

r'? =r? +p2 —-2pp
—r2 +r? cosec? o —2r coseco .r sin o [Using (1) and (2)]
r? cosec? a —r?
'2 2 +cot? a. -[3)
Also, we have p’z —r2 -p 2-r?2 _r?5in% q=r? - sin? a)
p'2 =r? cos? a. ..(4)
Dividing (4) by (3), we get
p:; =rz co:z & =sin? a.
r r“ cot’ a
p’z =r'? sin? or p'=r'sina.

Thus the locus of the point (p’,r’)is p =r sin a, which is an equiangular spiral.

Q.11. Find the points of inflexion of the curve y2 =x(x+ 1]2.

Ans. The equation of the curve can be written as y=(x +1) Vx. (1)
Differentiating (1) w.r.t. X, we getd—y =3 X2 +L.
dx 2 2%

d? y_3 1

dx® aVx ax3?
. - ) d3y 3 3
and again differentiating w.r.t. X', we get =— -+ . w(3)
dx? gx3/2  gx>/?

Again differentiating w.r.t. ¥’ -(2)
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d2
for the point of inflexion, we have LT =0.
dx
73 —71 =0 or [3 —1)=0 or x =1.
aVx AxVx x 3

3
From (3) it is obvious that at x =1, "y

3 ax?
[%,14/3\/5}

Q.12. Show that the sine curve y = sin x is everywhere concave with respect to
the axis of x excluding the points where it meets the axis of x.
Ans. The given curve is y=sin x.

We have & =cosx and d* Y =—sin x.
dx dx?
The function sin x is a periodic function with period 2r. Hence, it is suifficient to
consider the given curve in the interval [0, 2x].

In the interval [0, 2n], we have y=0when x=0orx == or x =2x.
2
When x €]0,n[, we have y>0and d—;>0.
dx

# 0. Thus, the point of inflexion are given by

a’y
dx
Hence, the curve y =sin x is concave to the axis of x in the interval ], 2r[.

Thus the curve y =sin x is everywhere concave with respect to the axis of x excluding
the points where it meets the axis of x.
(Q.13. Find the points of inflexion on the curve r(E)2 —1)=a92.
Ans. We haver =a8? /(6% -1).

j_;=a[(92 -1).20 -82.20]/(0% -1)? =-240 /(8% -1)?,

Soy when x e |m,2x|[.

d*r

and . =-2a[(0% -1)* .1-6.2(0% -1).20]/(0% -1)* =24 (362 +1) /(82 -1)3.

We know that at the point of inflexion, the radius of curvature is infinite. Hence at the
point of inflexion, we have

r? +2(dr /d0) —r (d?r /d6%)=0
a’e* . 8a“0%> 220 (302 ) 5
0% -1 ©?-1* % -1)*

or
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a’0? (02 -3)(8% +2) _,
©% -1y’
or 02 (82 -3) (0% +2)=0
92 =0,3,-2.

or

Rejecting the values 82 =—2 and 0 we see that the points of inflexion are given by
0% =3 ie, =13,

Q.14. Examine the curve y =sin x for concavity upwards, concavity downwards
and for points of inflexion in the interval [-2x, 2n].

Ans, The given curve is y=sin x.
2 3

We have ci—y=cosx, Q=—sinx and d—y=—cosx.
dx dx? dx>
dzy

Also, we have — 2 <0, V xe]-2rn,—%]|,
dx?

2 2
d—y>0, v xe]—n,O[,u<0, v xe]0,n]
dx? dx?
dzy
and —2>0,V xe]x,2xn].

dx?

Hence, the curve is concave downwards in the intervals ]-2rn,—=[ and 0,7 [and

concave upwards in the intervals] ]-=,0[ and =, 2x[.

dzy

Now < =0 = sinx=0= x=-2x or x=—-mor x=0 or x=m or x=2%
dx?
d3y
At each of the points x =—2x,x=-m,x =0, x =7 and x =2n, we have —= = (.
dx

Thus there are points of inflexion at each of these points.
Also, y =0 at each of these points.
Hence, the curve has points of inflexion at (- 2z, 0), (— =, 0), (0, 0) (=, 0) and (2r, 0).

Q-15. Trace the curve x =a(t —sint), y=a(1-cost).

Ans. We have x=a(t—sint), = %=a(1—cost).

y=a(l—cost), = ZJ; =asint.

d_y=dy/dt= asint =Zsint/2cost/2=cot£
dx dx/dt a(l-cost) 2sin? ¢ /2 2
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Here, y=0when cost =1, ie, t =0,2n. When £ =0,x =0, and g—y =cot 0 = cc. Therefore
Ix

the curve passes through the origin and axis of y is tangent to the curve at this point.

Also y is maximum when cost =-1,ie,t =m.
; dy T W
Whent=n,x=a(n —smn]=an,y=2¢z,a=cot5=o.

Therefore at £ ==, whose Cartesian coordinates are
(am,2a) the tangent to the curve is parallel to x-axis and curve
does not lie in the region y>2a.

In this curve y cannot be negative because cos t cannot be
greater than 1. Hence one complete arc of the region cycloid lying ™
between 0 <t < 2x. o]
Q.16. Trace the curver =a + bcos0,a< b.

Ans. (i) The curve is symmetrical about the initial line.

(ii) r =0, when a +bcos0 =0 ie, cosO =(—%J or 0 =cos 1 [—%J buta<b, ie, %< 1,

therefore cos ! [—g] comes out of be real so that§ =cos ™ (—z] is the tangent at the pole.

(iii) r is maximum when cos@ =1,i.e, 0 =0.

Then the maximum value of r =a +b and the minimum value of r =a —b when
cosO=-1ie, 0 =m.

(iv) Since we have  r =g +bcos®9.

tLr=—bsin0
do
then tan¢=rd_9=_w_
dr bsin®

Now if 8 =0 and =,$ =90° thus at the points (@ +5,0),(a —b,w) the tangents are
perpendicular to the initial line.

(v) The following table gives the corresponding value of r and 6
AY

0=cos™ (_g) /\(ﬂm .
= Cy - x

) 0 /2 cos™! [_a) cos (GJ <B<m r
b b

r a+b a 0 r is negative a-b
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JIq 1] Hel LONG ANSWER TYPE 151D

3

Q.1. Find all the asymptotes of the curve x +x2y—xyz —y3 -3x,y-1=0.

Ans. The degree of the curve is 3 so it has 3 asymptotes which are real as well as imaginary.
Since the coefficients of highest degree, i.e, 3rd degree of x and y are constant sc there are no
asymptotes parallel to co-ordinate axes. Thus there are oblique asymptotes of the form
y=mx+c.

Now putting y =m and x =1 in the third degree terms of the curve, we get

¢3(m)=1+m —m? —m3.

2 _m? =0, we get

Solving the equation ¢3(m)=0ie,1+m-m
(1+m)(1-m?)=0 or m=-1,-1,1.

Determination of ¢. For m =1, we use the following equation

¢ by’ (M) +_1 (M)=0 or ¢ 3’ (m) +d; (m) =0. (1)
Putting y =m and x =1 in the second degree terms of the equation we get

¢z (m)=0.
From (1), weget c[1-2m—-3m%]+0=0
atm=1 c(1-2-3)+0=0 or -4c=0 or c=0

Thus one of the asymptote is y=x.
Determination of ¢ for m=-1, 1. Since two out of three roots of the equation

3 (m) =0 are same, then we use the following formula to determine ¢

2
c " c ., _
§¢3(m)+ﬁ¢z(m)+¢1(m—0- w(2)
Putting y=m and x=1 in the first degree terms of the equation we obtain
$1(m)=-3-m.
From (2), we have
2

c c _

2
atm=—1 %(—2+6)—3+1=0 or 22-2=0 or c=zL

Thus other two asymptotes are
y=—x+1,y=—x-1
Hence, all the asymptotes of the given curve are
y=x,x+y-1=0,x+y+1=0.
Q.2. IfCP, CD be a pair of conjugate semi-diameters of an ellipse, show that the

radius of curvature at P is C% where a and b are the lengths of the semi
a

axis of the ellipse.
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x2 2
Ans. Let CP and CD be a conjugate of semi-diameters of the ellipse St y—z =1
a“ b
Let the coordinate of P are x =a cost, y=bsint. (1)
Also, the coordinate of D are
|:a cos(g +t} bsin (g + t]:| =(—asint,bcost).
Y4
From (1), we have
d_x =—gsin t,@ =bcost
di t 0 P
dy dy/dt _ b (+3
= = =—Zcott
dx dx/dt a s »
2
= d—y=i @ =i Ecott \J
dx? dx\dx) dx\ a
. cott 2 écosecz t 3 cosect |= "3 cosec® ¢.
dt\ a dx \a a a’
2
Putting the values of 2y and i in
dx dx?
3/2
2 3
[1+(@J } [1+£ coszt]
dx a? sin’t (a? sin? t +b? cos? £)°/2
P=h T b — ab
- cosec® ¢ - cosec® ¢
a? a?
29, 3 L A
= p= (0" SR +bb G ) (By neglecting the negative sign)
a
w(2)
From figure
cD =\/(—a sint —0)2 +(bcost —0)2 =(az sin? ¢ +b? cos? t)llz.
cp? (a2 sin? ¢ +b? cos? t)3/2
= . «£3]
ab ab
cp?
Now from (2) and (3), we have p =T'
a
2
; o X
Q.3. Show that the circle of curvature at the origin of the parabola y=mx + =~
a

is(x2 +y2 )=a(1+m2 J(y —mx).

2

Ans. We have y=mx #E
a
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Differentiating eqn. (1) w.r. to x, we get

' 2x " 2
y'=m+— and y"="—
a

Now, prt " &

At the points (0, 0), we get
o=, L+m? P~

2
5 1 +(m +2_x)
1+y’ a

y" 2/‘]I
Assume that (a, ) is the centre of curvature at (x, y) then

2
a=x-Ay'=x- ;m+2x[1+(m+2x]] andB=y+A= y+[1+(m+2x]]

Since, A=

a a a

If (0.9, Bg ) is the centre of curvature at (0, 0). Then we get
o =—?(1 +m?)and B, =—%(1 +m?)

Therefore, equation of circle of curvature is :
(x—0g) +(y—Bo)* =p}

2
= [x+"‘2“(1+m2)] {y ““;’"]} « @em?y

2.2
= x? +y2 +ma(1+m2]x—a(1+m2]y+m a (1+m ] + 4 (1+m )

2

a 23
=—(1+
1 (1+m*%)
= x2+y? +ma(l+m)? x—a(1+m?) y=0
= x% +y* =a (1+m)? [y -mx]
xm ym
Q4. Find the envelope of the family of curves —m+b—m=1, where the
a

parameters a and b are connected by the relation a? + b? =c?.
Ans. The equation of the given family of curves is
xm oy
— k=, w(1)

a™ pm
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where the parameters a and b are connected by the relation
af +b? =cP, 2
Since there is a relation between a and b, therefore we shall regard b as a function of a.
Now we shall differentiate (1) and (2) with respect to a regarding x and y as constants and b as
a function of a.
From (1), we get
_mx™ my™ db_, ;. db __x™ ja™*1

mel ymelda " da gm gpmel ~(3)

a

Again from (2}, we get

paP™! + pb?! (db fda)=0
ie, db fda=-aP! JpP L. (4)
Equating the two values of (db /da), we get

e /am+1 =ap—1 or x™ [a™ =£. 5)

AV S G

e havflaliminating a and b between (1), (2) and (5), we get the required envelope. From (5],

x™ fa™ _y" /" x™ [a" +y" /BT _1 [Note]
a? b? a®? +b? c?
x™ /ap+m =1/Cp
or aPt™ =xMcP or a=(xmcp)1/[p+m)
or aP =(x"cPyP/P+m) _ ymp/(p+m) cPp+m)
Similarly bP = ymp/p+m) P Np+m).

Substituting these values of a? and b” in (2), we get
P 1+m) cymp/(p+m) | mp/(p+m)y _ P
of KPP+ | mp(p+m) _ b [(p+m)
or xmP/prm)  mp/p+m) _ mp/(p+m)
which is the required envelope.

1
Q.5. Trace the curve x =acost + Ea log tan? %, y=asint.

Ans. (i) Put—t for tin the given equation of the curve, we get x =a cost +% alog tan? %and

y=-a sin t.Therefore, every value of x there are two equal and opposite value of y= curve is
symmetric about x-axis.
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Further, put n —£ for t in the given equation of the curve we get

X =-acost +;a logc()t2 %=—a cost—la logtan2 2

and y=asint
For every value of y there are two equal and opposite value of x, so curve is symmetric
about y-axis.

(ii) Differentiating the given equation w.r.t.  we get
d—x=—asint+la L ZtanEsecZE %
dt 2

tan2 1 z) 2
. a .
=—gsint+ —— =—asint +
= b t sint
2sin —cos —
2 2
_a(l—sin2 t) _a cos? ¢
sin¢ sint
and aj:::: cost

dy _dy/dt _acost.sint
dx dX/dt acoszt

=tant

(iii) We have y=0 when sin£ =0, i.e, t =0, when t - 0, x > —oc. Therefore x - —
when y— 0 showing that the line y=0 is an asymptotes of the curve.

(iv) Clearly y is maximum when sint =1, ie, t = L
2
t =g,x=0,y=a anddy=tan1;=oo

= Curve passes through the point (0, @) and the tangent at this point is the x-axis.
{v) Clearly the numerical value of y cannot be greater than a therefore, curve does exist
in the region y>a and y<-a.
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Q.6. Tracethecurvex =a(t +sint),y=a(1-cost),when—z <t < x.(Cycloid)

Ans. Here ‘;: =a (1 +cost) and Gb: =asint.

dx dx/dt af(l+cost) 2

(i) y=0,whencost =1ie,t=0.

Whent=0,x=0,(dy/dx)=tan 0 =0.

Therefore the curve passes through the origin and the axis of xis tangent at the origin.

(i) y is maximum when cost =-1, ie, £ =n and —n. When ¢ =x,x =an, y=2a and
(dy / dx)=co.

Therefore at the point t =xn, whose cartesian coordinates are (arn, 2a), the tangent is
perpendicular to the x-axis. Whent =—x,x =—an, y=2a, (dy —dx)=—c0.

{iii) In this curve y cannot be negative. Therefore the curve lies entirely above the axis
of x. Also no portion of the curve lies in the region y>2a.

(iv) Corresponding values of x, y and (dy/dx) for different values of t are given in the
following table :

Therefore d_y=dy/dt= asint =ta t

t -7 - R 0 L by
1 1

X —an —a(5n+1) 0 a(£n+1] an

¥y 2a a 0 a 2a

dy/dx —® -1 0 1 0

If we put —¢ in place of ¢ in the equation of the Yi

curve, we get x=—a (t +sint),and y=a (1 -cost) Thus m

for every value of y, there are two equal and opposite ,__ 5, o
values of x. Therefore the curve is symmetrical aboutthe y=2a y=2a

y-axis. Hence the shape of the curve is as showninthe /N |
diagram. The portion of the cycloid included between two
o
»X

successive cusps is called an arch of the cycloid.

Q.7. Trace the curve y2 (a+ x]=x2 (a—x).
Ans. (i) The curve is symmetrical about x-axis.

(ii) The curve passes through the origin. The tangents at origin area ( y2 —x? )=0ie,
y=zxx.Since there are two real and distinct tangents at the origin, therefore the origin is a
node on the curve.

(iii) The curve intersects the x-axis where y=0

ie, x? (a —x)=0.

Therefore the curve intersects the x-axis at (0, 0), {a, 0).

The curve intersects the y-axis only at origin.
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(iv) Tangent at(a, 0): Shifting the origin to (a, 0] the equation of the curve becomes
y2 (2a +x)=(x +a]2 {a —(x +a)} or y2 (2a +x)=—x (xz +2ax +a> )-
Equating to zero the lowest degree terms, we get x =0 (ie, the new y-axis) as the

tangent at the new origin. Thus the tangent at {a, 0) is perpendicular to x-axis.

x =1in the highest i.e, third degree terms in the equation of the curve, we get ¢3{m)=m

(v]) Solving the equation of the curve for y, we get
y2 =x? (@a—x)/(x+a).
Whenx =0, y2 =0and when x =a,y2 =0.
WhenO<x<a, y2 is positive. Therefore the curve exists in this region.
When x >a, y* is negative. Therefore the curve does not exist in the region x >a.
When x — —a, y2 — w, Therefore x =—a is an asymptote of the curve.
When —a<x<0, y2 is positive. Therefore the curve exists in this region.

When x<—a, y2 is negative. Therefore the curve does not exist in the region x< —a.

(vi) The curve has an asymptote parallel to x-axis and it is x + a =0. Putting y =m2 and
#1

The roots of the equation ¢ (m) =0are imaginary. Therefore x =—a is the only real asymptote
of the curve.

(vii) For the portion of the curve lying in the first quadrant, we have
Y
y=xV{l@a-x)/{a+x)}=x w.
(L+x /a)'’?

When 0< x<a,y is less than x. Therefore the curve lies below the line y =x which is

tangent at the origin.

quadrant, we have @

For the portion of the curve lying in the second

— 172
y=g Ux/0)
(1+x/ 0)1/2
When —a < x< 0,y is greater than the numerical value

X

,x<0,

Therefore the curve lies above the tangent y=-x.
Hence the shape of the curve is an shown in the

adjoining figure. a
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Q.1. Define the sequences.

Ans. Let S be any non-empty set. A function whose domain is the set N of natural numbers
and whose range is a subset of §, is called a sequence in the set §.

Q.2. Define limit point of the sequence.

Ans. A real number ! is called a limit point of a sequence< §,, > if every nbd of I contains
infinite number of terms of the sequence. Thus! e Ris a limit point of the sequence < §,, >if for
givene >0, S, € |1 —&,l +& [, for infinitely many points.

Q.3. Define sub sequences.

Ans. Let< S, > be any sequence. If (ny,n,,...,n, ...) be a strictly increasing sequence of
positive integers ie, i>j= n; >n jr then the sequence (S',,,l 5 ,...,Snk...] is called a sub
sequence of< S, >

Q.4. Show that the sequence {(—1)" / n) is convergent.

Ans. Let (sp)={(-1)" /n).
_q32n
Here lim s;, = lim " lim 1 0
n—> n—sx 2n n—>w« 2n
—_4y2n+1
and lim sy,,1 = lim L ) il lim 1 =0
n—» o n>«x 2n+l n— o 2n+l
which gives, lim sy, = lim s9,,4=0 = lim s,=0, VneN.
n—» w0 n—rw® n—»w

Since 0 is a finite quantity. Hence, the given sequence {s,) is a convergent sequence.

Q.5. Show that the sequence <;> converges to 0.

Ans. Let (s,) =<l>.
n
: 1L . . 1
Now lim sy, = lim — =0 and lim sy,,1 = lim =0
now n—»w 2n n— @ n— o 2n+1
Therefore lim s;, = lim $3,,7=0 = lim s,=0 VneN.
n—»w n—>w A— ®©

Since 0 is a finite quantity. Hence, the sequence (s, } is convergent and converges to 0.

Q.6. If<t, >diverges to « and s, >¢t, Vn, then< s, > diverges to «.
Ans. Take any given k>0.
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Since< t, > diverges to o, therefore, for k>0 there exists m € N such that
t,>kforallnzm

= sp>kforallnzm. [.s,>t, VneN]Hence< s, >diverges to o.

1_ ..
Q.7. Show that the sequence < log ~ > diverges to — .
n
Ans. Lets, =log 1 Take any given k<0.
n

Then s, <k if log l< kie, if-logn<k
n

ie, iflogn>—-kie, ifn>e k.

Ifwe takem e N'such thatm>e ¥ thens,, < kforalln > m.Hences, — — asn — .
Q.8. Prove that the sequence < n” > where p> 0 diverges to infinity.
Ans. Lets, =n”.Thens, >0forallnasne N and p>0.
.. The sequence< sl,, >=< nlp > exists.
Sincewe knowthatip — 0asn—» o, ..n? - wasn—> «.Hence< n? >diverges to .
n
Q.9. Prove that lim %[1 +21/2 4313 1y nt/")=1,

Ans. Lets, =n'/", Then we know that lim n'/" =1,
Hence, by Cauchy’s first theorem on limits,
: b L1 172 | 41/3 1/n+ _
lim = (sq +53 +...+5,)=1 or lim =~ (1+27° +3™" +...+n" " )=1L
n n

(;2.10.Showthatlim1 1+1+...+ L =0.
n 3 2n-1

.Then lim s, =lim 1 =0.

Ans. Lets, =
2n-1 2n—1

$1 +8 +...+8,

-» By Cauchy’s first theorem on limits, lim =0,
n
Since s =1,s; =1,... )8y = 1 . - lim 1 1 +1 +l +...+ 1 =0.
3 2n-1 n 3 5 2n-1
Q.11. Test for convergenceX ——.
(logn)"
Ans. Hereu, = L = ul/m -
(log m)" logn
s lim ul/rl =lim L =0, whichis < 1.

" logn

Hence by Cauchy’s root test the given series is convergent.
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Q.12. Assuming that n'/" 51asn—> «, show by applying Cauchy’s nth root test

1/n

an
that the series £ (n'/" —1)" converges.

n=1
Ans. Here,u, =(n'/" -1)". .. ulf® =pl/" _1,

lim ul? = lim (0" -1)=0<1.
n—» oo n— w

Hence, by Cauchy’s root test, the given series converges.

-n*
Q.13. Test the convergence of the series (1 “+ 1] :
n

1™ 1™
Ans. Here, we have up, =(1+—J = ()" =(1+—J
n n

1" 1
= lim (u,)"" = lim (1+—J =2<L
n—r o

n—w n e

Hence, by Cauchy’s root test the given series Zu,, is convergent.

911 E:X SHORT ANSWER TYPE :I/[F311'D

Q1. If (s,) is a sequence in R, where s, =1+%+%+...+1 evaluate,
n

lim |a,,; —a,|. Verify, is this sequence satisfy the Cauchy criterion.
n—r®©

Ans. Here s, =1+1+1+...+1 =  Spu1 =1+1+1+...+1+i
2 n 2 3 n n+l
1 ;
Sp+l —Sp = = lim |s, .1 —s,|=0.
n+1 n—>o
Also, here we have 55, -5, = 1+l+1+...+1+—1 +—1 +...+i
2 n n+l n+2 2n
1 1 1
=14+ =+ =4+
( 2 3 n)
_1, 1, 11 11
n+l n+2 2n 2n n+l 2n

= |S2, —Sp |>% VneN.

’ G 1
=> There exists a positive integer k such that|s, —s; |2 7 whenevern = k.

= Cauchy criterion in not satisfied.
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Q.2. Write and prove Cauchy’s second theorem on limits.
Ans. Theorem (Cauchy’s second theorem on limits) : If (s, ) is a sequence of positive

terms and lim s, =1, thenlim (s;,52,...,5, R
n—» o

Proof : Let (t,) be a sequence, such that
t, =logs,, VneN.
Now lims, =I=lim¢, =limlogs, =log!
(lim s, =1 < lim log s, =log ! provided s,, >0, ¥V nand [ >0)
Then, by Cauchy first theorem on limits, we have
lim t1 +tp +... +t,

n— o n

=limt, =logl

= lim 19851 +logiss +... +log s, =log! = lim 1log(sl.sz....s,,)=lo,tgl
n—w n n—wn
v 1/n . 1/n

= limlog (s, .52.....5,)"" =logl = lim(sq.57.....5,} " =L

Q.3. Write and prove Cauchy convergence criterion.
Ans. Theorem {Cauchy Convergence Criterion) : A sequence converges ifand only ifitisa
Cauchy sequence.
Proof : First, let (s,,) be a convergent sequence which converges to, say, L
Since s, — 1, therefore, for given € >0 there must exist m € N such that
|sp —ll<e f2¥ n2m.
In particular, |5 =1l<e /2
Now Isn =sm |=|(sp =)= (5, —D}| |5y —1l+]5p —|
<gf2+¢/2forallnzm.
Thus | s, — s, |[<& V n2=m, showing that (s, ) is a Cauchy sequence.
Conversely, let({s,,) be a Cauchy sequence. Then (s, ) is bounded. By Bolzano-Weierstrass
theorem, {s,,) has a limit point, say I. We shall show thats, - L
Let ¢ >0 be given. Since (s, ) is a Cauchy sequence, there exists m € N such that
|Sp —SmI<e/3V¥Vnzm
Since / is a limit point of (s, ), therefore every nbd of I contains infinite terms of the

sequence {s,). In particular the open interval ]! —; g, 1+ ; & [ contains infinite terms of (s, ).

Hence there exists a positive integer k>m such that

I—le<sk<l+§e ie, |si-ll<e/3

Now |sp =1 =108y —Sm) +(Sm —51)+ (55 -1
Slsn —5m |+|sm =Sk |+|Sk _II
<ef3+e/3+e f3forallnzm.

Thus|s, —I|<egforalln>m. .. (s,)convergestol
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Q.4. Show that lim ¥n=1

n—>wm
Ans, Let%n=1+h,whereh>(

= n=(1+h)" =1+nh+%h2 +...+h" = n>@hz,v’n
= h2<i, forn=2 = |h|< (LJ, fornz2
n-1 n-1
Let £ > 0 [any positive number, however small) then
|h|< 2 <g provide:d,iq;2 orn>i+1.
n-1 n-1 g2
If we take m € N such thatm>i2 +1
€
then |h|<eVnzm
or I'\’/r_l—1|<aVn2m:> lim ¥n=1
n— ¢
Q.5. State and prove Cesaro’s theorem.
Ans. Cesaro's Theorem: Iflim s, =l and lim ¢, =I;.Then
it Sltn +52tn -1+... +Snt1 =1112.
n
Proof : Let us define s, =I; +u, and |u, |=U,.
Then lim u,, =0 and therefore lim U, =0.
Now, by Cauchy’s first theorem on limits, we have
lim L [uy +uy +... +u,]=0. (1)
n

Consider, l[sltn +558p 1 +... +5,t1]
n

l
=1[t; +ty +...+t,,]+1[nr1t,1 Fupty 4 +...+upt;] w(2)
n n

Since, the sequence (£,,) is convergent. Therefore, it is bounded. Hence, there must
exist a positive real number k such that
|t, |<k, ¥neN.

Therefore, 1(ult,, +Upty q +...+ULty |20
n

1
;[Iu1 [tn [ +]uz [|tn-q | +... +up [|£1 1120

k
= ol [+ el 150
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Q.6.

Ans.

Q7.

= E[url +up +...+u, >0
n
k A
= —[uq +luy +... +u,]>0asn—» co. [By using]
n

Thus liml[ultn +u2tn_1 +i +unt1]=0.
n

tl +t1 F e n +fn _
n

Since, lim £,, =1, , therefore lim L.

Now, from (2), we have lim 1 (s1tp +S2tp_q +... + 881 ) =011,
n

Show that the sequence (s, ) defined by

1 1 1
Sp=——+——+...+—— converges.
n+l n+2 n+n
Since, the sequence (s, ) is defined by
1 1 1
Sp=—-+—=-+ +
n+l n+2 n+n
— s = 1 o 1 1
"1 7ne2 n+3 7 2n+2
1 1 1 1 1 1
Now Spil —Sp=| —+—+.. 4+ -l —+——+
n+2 n+3 2n+2 n+l n+2 2n
=1+1—1=1—1>O,Vn.
2n+1 2n+2 n-1 2n+l1 2n+2
Hence, the sequence (s, ) is monotonically increasing.
1 1 1 1 1 1 1
Now [$pl=|—+—+...+—|<=+=+...+==n.—=1
n+l n+2 n+n| n n n n
ie, |sp |1,V n

= sequence {s,) is bounded.
Then, by monotonic convergence criterion, the sequence (s, ) converges.
If r >0, show that r1/7 =1,

Ans, There are following three cases :
Case . When r>1.

Lets, =rl/in —1,then s, >0, V ne N, therefore

ri/m -1,

= r=[L+s,I" =1+ns, +...+s, ,21+ns,,VneN
r-1

= ——258,, VneN.

n
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Hence OSSHSE,VneN.
n

Then, by Sandwich theorem, we have lim s, =0=1im riin 1
Case II. When r =1.
Here, ri/" _1, vneN. = limri/ =1

Case III. When O< r<1, then 1>1.
r

1/n
1im(1] -1 = lim Y =1 = limr/"=1
r rl/n

Q.8. Show that the sequence (n / n+1), is a bounded monotonically increasing
sequence and convergent too.

Ans. Let {s) =<"1> =(1/2,2/3,3/4,...,n/n+1,....).
n+

Since, 1/2<2/3<3/4 <.
2 —
Now  s,,1 _Sn=n+1_ n _(n+l)" —n(n+2) _ 1 >0
n+2 n+l (n+2)(n+1) (n+2)(n+1)
= Sps1 —Sp<0Vn
=5 Sp+1 >S, VR = (s,)is monotonically increasing.

Further, n21>0 = s,>0.
Also =8y :1—L=L>O: S,<1Vn
n+l n+l

= 0<s, <1, Vn = (s, is bounded also.
We know that a bounded monotonic sequence is always convergent. Therefore, given
sequence is convergent.

Also lim s,= lim |- |= lim |—1 _|=1
n— ns>o\n+l; now|1+1/n
But / cannot be —1 since all terms of the sequence are positive. Hence I =2.

Q.9. Show that the sequence< s, > defined by the relation
1 1 1

§1=2,5,=1+—+—+...+

1! 21 (n-1)!

(nz=2), converges.

Ans. Wehaves, 1 -5, =lI >0 for all n.
nl

Hence, the sequence< s,, >is monotonically increasing.
Now, we shall show that< s, >is bounded.

Forn2z2,n'=1.2.3... ncontains (n —1) factors each of which is greater than or equal
to 2. Hencen!> 2" for all n>2.

L1 1

< ,forallnz2.
nl on-1
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1. 1 1 1
+

Thus Sp=l+—+—+—+...
1 2t 31 (n-1)
n-1
)
51+1+1+i+...+ 1 =1+ <3,foralln=>2.
! 2 n-2 1
2 2 1-=
YA
Also 51 =2<3.
2<s,<3forallneN Le,< s, >is bounded.

Since <s, > is a bounded, monotonically increasing sequence, consequently, it
converges.

Q.10. Prove that the sequence < > is monotonically increasing bounded

3n+2

above and bounded below.
2n-7

is said to be a monotonic sequence, if it is either an increasing

Ans. A sequence <
3n+2

sequence or a decreasing sequence; if either s,,, 4 25, ors, 1 <s, VneN.
2 4
—(Bn+2)——-7
3 3

Since sn=2n_7= e _25 1
3n+2 3n+2 3 3 3n+2
Sp+1 =E_§- 1
3 3 2n+5
s -5 =25[ 1 B! }= 25 >0V neN
M1 T 3 13042 3n+5| (3n+2)(3n+5)

~. Spy1 >8, ¥V ne N and so the sequence (s, ) is a monotonic increasing sequence.

Also from (1), we observe that s, < % Vne Nie, 2/3is an upper bound for {s,,) and so

{Sp is bounded above.
Again {s,,) is a monotonic increasing sequence and so

5,25 =%=—1Vne}v.
+

*. 81 =—1is a lower bound for {(s,,) and (s,,) is bounded below.

Since the sequence {s,) is monotonic increasing and bounded above, therefore by

monotonic convergence theorem (s, ) converges to its supremum.

From (1), we observe that lim s, = LI 0= E
n—wo 3 3

Thus the sequence (s, ) converges to % and so sup (s, )= %

Also inf (s, =51 =-1
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S
Q.11. Test the convergence or divergence of the series1+ bk =gk
2 37 4
Ans. Leaving the first term, we get
n ~[n+1]
u, = f = 1 =1 1+1 =E 1—M+... =1_ 1+1 1+_“
(1 1yt n n n n n n)n
n[l +—J
n

LetZy, =X 1 ,wherev, = 1 , be the auxiliary series.
n n

Then lim I lim 1; 1
n>w vV, n>o|n [1+1/n)"+1 n

= lim / 1+ = ,whlch is finite and non-zero.
[ (1+1 / n)”

n—w

Now, since the series Zv, =X L. is divergent, therefore by comparison test the given
n

series is also divergent.
Q.12. Test the convergence of the following series
(1)1+l+£+£+4'4 . (i) = + 3 +
22 33 4% 5° 1+ﬁ T112v3 14342
Ans. (i) Omitting the first term, if the given series is denoted by X u,,, then

1 22 33 a4t n"
Tup="+—+——+——+.,. =X —
n n
Here, up =H7.Takev,,= n =l.
[n +1)n+1 nﬂ+1 n
n
Now limu—"=lim ni.n
Vn (n+1)**1
n
=lim L =l, '.'lim[1+1] =e
A+1/m)".1+1/n)) € n

which is finite and non-zero.
But the auxiliary seriesZ v, =Z (1 /n)is divergent as here p =1. Hence by comparison
test the given series is divergent.

(i) Here, u, = R
1+n4/(n+1)
n 1
Take 1 R
" n \/H nllz
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Now lim Un =lim SR .nl/2
1+n

Vn V1)

=1, which is finite and non-zero.

» 1
=lim
{1 /32 ¢ [(1+1/n) }
Since the auxiliary seriesZ v, =X (1/ nl/? )is divergent as here p =1 /2<1, therefore,

by comparison test the given series is divergent.

Q.13. State and prove Cauchy’s integral test.
Ans. Cauchy’s Integral Test : Let f(x) is a non-negative monotonically decreasing

o0
integrable function on [1, o[ then the series Z f(n) and the improper integral Lm f(x)dx
n=1
converge or diverge together.
Proof : Let f(x)is a monotonically decreasing on[1, «].
Thenwe have f(n)2 f(x)2 f(n+1), wheren<x<n+1
Also f(x)in non-negative and integrable, we have

j:” Fn)dx > j':“ Fo)dx> j:*l Fln+1)dx
or fln)> J’:” Fx)dx> f(n+1). (1)
Now, puttingn=1,2,... (n —1)in (1) and adding all these, we get
FO+ @) 4o+ f(n-1)> J‘f Flx)dx +jz3 Fx)dx +...
[ foedxz f2)+ F3)+.. f). (2)
Let us suppose Sp=fA)+ f(2)+...+ f(n)
and I, = j: flx)dx.

Then (2) can be written as
Sn—fx)21, 25, - f(1)

or f(m<s, -1, < fQ). b3}
Let u, =8, I, vneN.
Then Upry —Up =(Sps1 —Tne1)—(Sp — 1)
=St = 5n)~ (et ~In)=fl+1)= [ flx)dx
<0 [using (1]]

Hence, we have {u,,) is monotonically decreasing sequence.

Now, from (3)u, = f(n) 2 0,vn € N. Therefore sequence {u, ) is bounded below. Hence
{u,) is a convergent sequence and it has a finite limit.

Now, since S, =u, +1I,, the sequence {(S,) and ([,,) converge or diverge together.

Hence, the series £f (n) and the integral .[100 f(x)dx converge or diverge together.
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[+ o]
Q.14. Show that Cauchy’s integral test that the series X - - converges
n=2 n(log n)’
p>1and diverges ifO< p<1.
Ans. Let us suppose flx)= 4 ,p>0
x (log x)?
and x €[2, o [; then obviously f(x)is monotonically decreasing on[2, «o[ and positive value
Let .[2
x (log X)"
1-p
Then I, =[M} P#EL
1-p
2
[Qogn)' 7 —(log2)' 1, p=#1
[1— )
and I, =[loglog x]3,p =1

=[log logn—loglog2],p=1

Therefore, we have lim I, = 11m I f(x)dx=c0,if p<1
n—w

and lim I, =— log2)' 2, if p>1.

n> ( -p)
Thus the integral I; f(x)dx converges if p>1 and diverges if 0< p<1.
Hence, by Cauchy’s integral test, the series

z ft= y L
n=2 (log n)P
converges if p>1 and diverges if 0< p<1.
Q.15. Test the converges of the series

2 3
1 (2, 4(3) x24.(4 x3 4. 0,x>0.
2 \3 4 5

Ans. Omitting the first term of the series (because it will not affect the convergence or
emergence of the series), we have

Therefore, lim u
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Therefore, by Cauchy’s root test, the given series Zu, converges if x<1, divergent if

x>1.For x =1, test fails
1 n
b
a C 1 >0.

n— n—w 2\' e? e
)
.. The series Zu,, diverges ifx=1.
Hence, the given series is convergent if x<1 and divergentif x 2 1.
Q.16. Test for convergence the following series :

., 2P 3P 4P | 2 3
N1+—+—+—+... (ii) + + +i
21 31 41 1+2 1422 1428
p p
Ans, (i) Here u, =" S Upyq = (n+1)"
n! (n+1)!
Now up _nf ()t (+)n’ _ n+l
Upi1 A (p41)? (n+1)P (@+1/n)P
lim Un _ lim Bl =oo, which is>1 for all values of p.
Upi1 (1+1/n)?
Hence by ratio test the series X u,, is convergent.
" n 3 _ n+l
(ii) Here u, —1+2n o —1+2n+1 :
- u, _ 142" p2™laa1/2™l)  20+1/2™7)
Upip 142" A+l 2" (141/2")n(1+1/n) (+1/2")(1+1/n)
Mot s O40) 5 pichissi

Upir  (1+0)(1+0)
Therefore, by ratio test, the given series converges.
Q.17. Test for convergence the following series
1ia+ a(a +1]+ a(a +1][a+2]+
1.2 1.2.3

Ans. Leaving the first term, we have
- (a+1)(a+2)...(a +n-1)

n

1.2.3...n
afa+1){a+2)...(a+n-1)(a +n
and then u, = ( )[123? 1(1(n+1] ) ).

u, n+l1 1+1/n

Now :
Up,q a+n afn+l
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.U . .
lim —1 =1, so that the ratio test fails.
Upiq

Now we apply Raabe’s test. We have
Tt 08 o | it PR |l ) g B g
Upii a+n a-+n 1+a /n
Hence by Raabe’s test, the given series is convergent if1 —a >11i.e, ifa< 0, divergent if
1-a<1lie, ifa>0and the test fails if1 —a =1ie, ifa =0.
In case a =0, the given series becomes1+0+0+0+...
The sum of n terms of this series is always 1. Therefore the series is convergentifa =0.
Thus the given series is convergent if @ < 0 and divergent ifa >0.

1 2! !
Q.18. Test the convergence of the ser‘iesl+5x+—2x2 +3—3x3 +...
3 4
11! |
Ans. Here, we have ui,,=(jrl Dlgn-1 Up1 = X
n-1 n
n (n+1})
lim Hn _ lim (n+1)" [n_l)!xn_l = lim 1+l i 1_e
n—byolUp,q n>w n!x"_n"—l n— o n .X X.

; o € > . y ;
Hence, the given series is convergent if — >1, ie, if x< e, divergent if x >e and the test
X

fails if x =e. In this case

3y
lim |:n10g Un }= lim nlogin = lim [nz (l—i+i+...]—n]

n=—»w un+1 n—px e h—w

[ 1.1 1
=lim |->+——...|=—=<1
nsw| 2 3n 2
Hence, by log test the series Zu,, is divergent if x =e.
Thus the given series Zu,, is convergent if x< e and divergentifx > e.
Q.19. State and prove Leibnitz test.
Ans. Leibnitz Test: Ifthe alternative seriesuy —uy +u3 —... (U, >0,Vne N)issuchthat

(Dupsq <u,VneN (i) lim u, =0.
n— w

Then the series converges.

Proof : Let s, =u; —uy +ug —... w1 u, so that<s, > is a sequence of partial
sums of the given series.
Now for all n, sn12 —S2n =Uzns1 —Uzns2 20 [By (1]]

which gives that s,, is a monotonically increasing sequence.
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Further, Sop =Uq —Up +Ug —... Uy, 1 —Usy,
=uy —(uz +uz)—(uy —us)—... —uz,
=uy —[(ug —uz) +... +uz,]
=uq —some positive number
< Uq.
Therefore, the monotonically increasing sequence < s,, > is bounded above and
consequently it is convergent.

Let lim s,, =s.
R—w
Now Sn+1 =S2n +Uzn41
lim $p,,1 = lim s5, + lim up,,1 =5+0 © lim u, =0
n—» w n—» n—w n— o
=S&5.

Thus, the subsequences< s,, >and< s;,,1 >both converge to the same limits. Now we
shall show that the sequence< s, > also converges to S.
Let e >0 be given. Since, the sequences s,, and 5,,,, both converges to §, there exist
positive integers my n, such that
|Sop —S|<eVRZmy,

and |52p41 —S|l<eVRZmM,.
Let m=max {my my).
Then |5, —s|<eVnzm
which gives that the sequence< s, > converges to s.

Hence, the given series T (—1)"*

u, converges.
Q.20. Test the convergence of the series

1— 1 + 1 e X>0,a>0.
X X+a Xx+2a

Ans. Since, the given series is an alternating series.

~. The n* term
i =(—1]""1 u,,where u, =¥>
x+{n-1)a
1 1

Now u U, = =

w1 T fna x+{n-1)a

_[x+{n-1)a]—[x +na] _ —-a S
[x +na][x+(n-1)a] [x+ma][x+(n-1)a]
Upy1 <Up.

Also, lim u, = lim ;=0.

n—> o n>wo x+(n-1)a

Hence, by Leibnitz test, the given series is convergent.
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Q.21. Show that the series 1 —; + ; - 1 +... converges.

Ans, The given series is an alternating series.
uy —uy +uz —ty +... +(-1)""1 u, +...,(u, >0foralln).

Hereu, =1/n>0foralln

Wehave  u,,.q —u, = 1 1. nn-l_ -1 oferalln
n+l n nn+1) nn+1)

Thus u,, , <u, for all n i.e, each term is numerically less than the preceding term.

Also lim u, =lim 1 =0.
n

Hence by Leibnitz’s test for alternating series, the given series is convergent.

Q.22. Show that the series f \F f

Ans. The given series is an alternating series.

. The n term t, = (—1)"_:l u, whereu, = i Q.

vn
11f\/ﬁ

..is conditionally convergent.

Now Upq —Up = -
" B Vn+l \/; \f\/n+
Upy1 <Up.
Also li lim — =
Hl)mwun nl)mao(

". By Leibnitz test the given series is convergent.

(11t 1. . 1
=¥ — is divergent| - p==-<1
Vo | o s A

Hence, the given series is conditionally convergent.

STEI'E LONG ANSWER TYPE LIIEF (I

Q.1. Write and prove Cauchy’s first theorem on limits.
Ans. Theorem (Cauchy’s first theorem on limits) :
51 +89 +...+5, -]

But the series X

If lim s, =1, then lim
n— w n—y n

Proof : Define a sequence< ¢, >such that
s, =l+t, VneN.
lim¢, =0
S1HSp e tSy g ittty
n n

and

(1)
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In order to prove the theorem we wish to show that
t1 +62 +... &,

lim =0.
n—w n
Lete >0be given. Since lim t,, =0,therefore, there exists a positive integer m, such that
It, -0|=|t, |<e/2 Vnzm. -(2)

Also, since every convergent sequence is bounded, hence there exists a real number
k>0 such that
lty, |<kVneN. w(3)
Now for all n > m, we have

£ +tg +o ity | |t g Fo+ g +tm+1 tlpi2 ...+l

n n n
Sltl|+|t2|+...+|tm|+|tm+1|+|tm+2|+---+|tn|
n n
gk nm B [From (2) and (3)]
n n 2
<m—k+5. -(4)
n 2
{ 0s"‘"‘<1}
n
Ifmisfixed,thenm—k<leifn>%.
n 2 £
- 2mk
Let us choose a positive integer p>> ——. Then
€
jrn—k< i e fornzp. [5)
n 2

Let M =max. {m, p}. From (4) and (5), we have

tl +C2 +...+tn <E+E=8VH>M

n 2 2

tl +t2 +...+&
n

Thus lim 1 =0 and consequently (1) gives

. S1+859+...+5
lim 21722 n ]

n
Q.2. Show by applying Cauchy’s convergent criterion that the sequence (s,)

ivenbys, =1+ _—+_+...+ diverges.
& Yon=""3"%s 2n-1 &
Ans. Here, we have Spel =1+1+1+...+ 1 + 1
3 5 2n-1 2(n+1)-1
11 1 1
=l+=+=+...+ +
3 2n-1 2n+1
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1.1 1 1 1.1 1
Spi1 —Sp=|1+=+=+... + % —1+=+=+...+
3 5 2n-1 2Z(n+1)-1

=

= L >0, VneN.
2n+1
Spi1 >Sp, YneN.

= The sequence (s, ) is increasing sequence.

Also, we have s, =1+1+1+...+ L + L +...+ i
3 5 2n-1 2n+1 4n-1
1.1 1 1 1 1.1 1
Sap —Sp=|1+=+=+...+ + Figi i = 1+=+=+...+
3 5 2n-1 2n+1 4n-1 305 2n-1
1 1 1
= + G
2n+1l 2n+3 4n-1
1 1 1
= Sg, —Sp>n| — >—etc. and there are n terms
4n 2n+l 4n

U

| S2n — S |>%, VneN

. e 1
there exists a positive integer k such that|s, —s; |> & whenevern >k

=

= Cauchy criterion is not satisfied.

= The sequence (s,,) can not converge.
=> The sequence (s, ) diverges to +o.

Q.3. Write and prove Cauchy’s general principle of convergence.
Ans. Theorem (Cauchy’s general principle of convergence) : A sequence is convergent if
and only if it is a Cauchy sequence.

Proof : Let us first suppose (s,) be a convergent sequence. Let, this sequence
converges to

. for a given ¢ > 0 these exists a positive integer m such that

s, —Il<e /2, Vnzm. (1)
In particular, forn=m
|sm —ll<e /2 b &)
Now, consider ISp =Sm |=|sp =1 +l=5, |<|s, =1|+]|5, —1|
<g f2+g /2, ¥Vnzm
=g, Ynzm
ie, |Sp —Sm|<e, VRZ2m

= (s, is a Cauchy sequence.
Conversely, Set (s, ) be a Cauchy sequence.
= {s,) is a bounded sequence. [By Theorem 1]
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= By Bolzano-Wierstress theorem (s, ) has atleast one limit point, say L We shall show
that sequence (s,, ) converges to L
Let € >0 be given.
Since, {s,,) is a Cauchy sequence.
. Ja positive integer m such that
15 —=Sm <& /3, Vnzm.

Since, I is the limit point of (s, ).
... for above choice of £ and m, 3 a positive integer k>m such that
|si —I|<e /3
Since, k >m, therefore from (3)
ISy —sml<€e /3.
Now, consider | sy —1l=|5, —5; +5p —Sg +55 1|
SISy —Sm | +lsm —sg | +lsg —1|
<egf3+e/3+e/3=¢
ie, |sp, —l|<e, Vnzm.

Hence, (s, ) is convergent.

(54, Prave St Hnn [(n+1)(n+2)(n+3)...(n+n]]1/ " 4

n—w nl’l e "
I
Ans. Let 5, =(n+1][n+2]...(n +n)= (2n)!
n" n" (n!)
1
Then Spiq = (2n+2)!
(n+1)"*! (n+1)!
Therefore, Sntl_  (2n+2)in" (nl) _ (2n+2)(@2n+1)n"
Se (n+1)™ (m+1)(2n)! (n+1)"+2
_(2n+2)(2n+1}n" _2(2n +1)n"
(n+1)"+2 (n+1)"*1
2x2n|1+ L |n"  4n|1+ L |n"
2n 2n

(1) (1) n[lﬂ](nm"
n

et ]
) e
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Q.5. Show that the sequence < s,, > defined by s; =1, 5,,,4 =

Ans,

Exa\g!gé Differential Calculus & Integral Calculus B.Sc.-l (SEM-I

Now, taking n — o, we have

4-|:1+zl} i
lim Sntl _ lim 1” ) . =ﬁ.
H—>ao § n—» e
§ 1+ [1+1}
n

Now by Cauchy’s second theorem on limits, we have

(+1) (7+2)... (n+n)}1/n 4

n

n

5
lim (s,)" = lim s"—”lJ:i: lim [
e

n—w n—)ao\ Sy g n—>ow

4 +3s,
3+2s,

,neN is

convergent and find its limit.
We observe that all the terms of the given sequence are positive.
First by mathematical induction we shall show that

Spi1 >S5, VneN.

4+3s; _4+43-1_7
3+2s; 3+21 5
Now assume as our induction hypothesis that for some positive integer n,

Siict P8y sl d)
4+35p,.1 4435,
3+2s5,,17 3+2s,
_(4+3sp.1)(3+25,)—(4+35,) (3+25p,1)
) (3+25041) (3+25,)

We have sy =18 =

. 8§32 >81.

Then  sp43 —Sp1 =

—_ Snt1~5n >0, by (1).
(B+2s,,1)(B3+2s,)

o Sp+2 > Sp41-
Thus 55 > 54 and if 5,,,1 >5,,then we have also s, > >sp.,1.

.. by mathematical induction s, 1 >5,,VneN.
Thus the sequence < s, >is monotonic increasing.
Now we shall show that the sequence< s, > is also bounded above.

3 1
2 (28 +3)=<
2(n ]2

We have Sy = i d® ud 5 ;
25, +3 2s, +3 2 2(2s, +3)
showing that s, 1 < %,V neN. Also, 51 =1< %

Thus s, < g,V ne N. Therefore the sequence< s,, > is bounded above by g
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Since the sequence < s, > is monotonic increasing and bounded above, therefore by
monotone convergence theorem it converges to its supremum.
Let lim s, =I. Then lim s, =1

: 4 +3lim s,
= lims, 4 =——1"1
3+2s, 3+21lim s,

3+21

Since all terms of the sequence are positive so  cannot be negative. Hence ! =+/2.We
haveinf< s, >=s; =1land sup<s, >=lims, = V2.

Now, Spyq =

=2 = I=iﬁ.

Q.6. Write and prove Cauchy’s root test.
Ans. Cauchy’s Root Test : Theorem : Let Xu, be a series of positive terms such that
lim ul/® =1. Then

(i) £ u,, converges, ifI<1; (ii) £ u,, diverges, if1<1;

(iii) the test fails and the series may either converges or diverge, if/ =1.

(Here ug/ " stands for positive nth root of u,, ).

Proof : Since u, >0, for all n, and (u, )1/" stands for positive nth root of u,, lim

u;/ " =1>0. Since lim u,lll " =1, therefore for € >0 there exists a positive integer m, such that
| u,}/" —I|<g,foralln>m,
ie, I-g< u$/"<l+a,for alln>m,
ie, (I-€)"<u,<{+¢)" foralln>m. (1)
(i) LetI<1.
Choose £ >0, such thatr =l +e<1.
ThenO0<i<r<1.

From (1) we getu, <(I +¢)" foralln>m ie,u,<r" foralln>m.

SinceX r” is a geometric series with common ratio r less than unity,Z r" is convergent.
Therefore, by comparison test, X u,, is convergent.

(ii) Let/>1

Choose € >0, such thatr =l —g >1.

From (1), we get (I —€)" <u, foralln>m ie,u, >r" foralln>m.

Since Zr" is a geometric series with common ratio greater than unity, Zr" is

divergent. Therefore, by comparison test, X u, is divergent.
(iii) Let/ =1
Consider the series X u,, whereu, =1 /n.

n
Then U/ =[1] ,s0 that lim u /" =1. [Note that lim n/ =1].
n

Since X (1 /n) diverges, hence, we observe that if

lim u,}/ " =1, the series X u, may diverge.
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Now, consider the series X u, , whereu, =1/ n®.
. .
In this case also, lim u,/" =1

SinceZ (1/ n? )} converges, hence, we observe that if lim u}l " =1, the series I u, may
converge.
Thus the above twe examples show that Cauchy’s root test fails to decide the nature of
the series when /=1
Q.7. State and prove D’ALEMBERT Ratio Test.
Ans. D'ALEMBERT Ratio Test : If Zu,, be a series of positive terms such that
(@) lim Y -],
R—>w© Uy, q
Then, if
(i) I>1, the series converges,
(ii) <1, the series diverges,
(iii) I =1, the series may converge of diverge and therefore the test fails.
&
Upi1

Proof : (a) Case (i) When I>1, Let £ >0 be a positive number such that! —g >1.

— o as n— «.Then Xu, converges.

; y u b
Now since lim " =], therefore, 3 a positive integer m such that
N Upiq

u
I-e< ™ <l+¢,wherevern>m.
Upi1

Now, puttingn=m+1,m+2,..., p—1, in succession in the above inequality, we get

u
I-g,< Ml o]4g
Umi2

u
l-g,<-M+2 <f4g
Um+3

up—l

l-g< <l+e.

u
p
Multiplying the corresponding sides of the first part of the above inequalities, we get

(e 1M Umi1 Umi2 i
Uiz U3 Up
—1-— u
= (-g)P 1M mtl
Up

= Up<Upmyq (-Y""1.(-€)F
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= u,<k(l-€)?,¥p2m+2andk=uy,,, (I -e)™*".
Since, the series X (I —¢)™? converges (being a geometric series with common ratio

{4 —s)_l , which is certainly less than unity), then by comparison test it follows that Xu,

converges.
Case (ii) When I<1, let & >0 be a positive number such that/ +e<1

i ; u g
Now since lim —" =], therefore, 3 a positive integer m such that
N> Upiq

Up

I-g< <I+g,Vn>m.

Upiq
Putting n=m+1,m+2,...,p-1, in succession in the second part of the above
inequality, we get

i
_mil<1+&
Ums2

Emi1<]+£
U3

up_l
u

<l+g

p

Multiplying the corresponding sides of the above inequalities, we have

u b
Umil (1 )Pt

e
= Up >tpyq (+€)™ ([ +€)7P
Y up >Al+e)?,V p2m+24=up,q ([ +e)™,

Since, T (1 +&) 7 is a divergent series (being a geometric series with common ratio
(I +.°:)'1 , which is certainly greater then unity), then by comparison test, it follows thatZ u,,

diverges.
Case (iii) Let I=1.

Now, first consider the harmonic series 1 +; + 2 +...+ 1 +...
n
u , u
Then Un A 401 o i Ynog,
Un+1 n n n—)wlh+1
Since, the harmonic series is divergent, we find that if / =1, a series may diverge.
. .1 1 1
Now, consider the series — + —+... + —+...
2 42 2
1 2 n
2 2
u . u
Then n [ +21] =(1 +1) = lim 221,
Up+1 n n n=® Upiq
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. . 1 . .
Since, the series = —, converges, we find that if/ =1, a series may converge.
n

; u : W
(b) Letus suppose lim —2 =+ o then there exist positive integers m and p such that
A= Up g

Un >pVnzm,p>1l
Upi1

Replacingnbym,m+1,m+2,...,n -1, we have
Um

Um+1

>p

Upi1 >p
Um+2

u,_
n1>p
Up

Multiplying the corresponding sides of the above inequalities, we have

u s
7m>pﬂ m
up

= u,<p™ " .uy,

= u,<A.p " Vn>mand A=p™ up,.

Since Xp~" is convergent, then by comparison test the series Tu, is convergent.

{a +x)_|_(a+21|r)2 +[a+3x]3 b

(Q.8. Test the convergence of the series

11! 21 3!
n
Ans. Here, we have u, =w
n!
n
n+1 1+a/x
= u _[a+(n+1)x] - u, n 1
n+l1 = = i
(n+1)! Upi1 " n LLalx n+l  x
n n+1
n
a/x
1+——
. U . [ n } 1 e?/* 1
= lim —%—= lim = =
n—swl,, 1 N>« 1+1 n 1+a/x n+l y x_e_ealx ex
n n+l

Hence, by D’'alembert’s ratio test the given series is convergent if —>1, i.e, x<~ and
ex e

divergent if x > 1 and the test fails if x = 1
e e
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In this case

]
1482
lim nlog U |- Jim nlog n
n— Up,1 ) now 1\ i n+1
[1+—J [1+—]
n n+l

= lim n |:n log [1 +E) +loge—nlog (1 +1) —(n+1)log [1 +£]:|
n n n+l

n—» o

. ae a’e? a3 1 1 1
= lim n|n| —- + B e ] B
n— w n 272  3p8 n 27?2 3q°

ae azez a3e3
-(n+1) - +
n+l 2(m+1)? 3@+1)°

a?e? 1 a?e?
= lim |- +-+——_ +terms containing n in the denominator
n— o 2 2 1
2| 14+—
n
a?e? 1 a%e?® 1
=— +=+ =—<1
2 2 2 2

Hence, by logarithmic test, the series is divergent.

: w : 1 : : 1
Thus the given series is convergent if x< — and divergent if x > ~.
e e

Q.9. Write and prove DeMorgan’s and Bertrand’s Test.
Ans. DeMorgan’s and Bertrand’s Test : The series £ u,, of positive terms is convergent or

divergent according as

lim {n( “n —1}—1}logn >lor<1l
Upi1

Proof : Let lim Hn ( Un —1J —1} log n} =k, where k> 1.

Upyl
Take a number p such thatk>p>1.

Compare the series £ u,, with the auxiliary seriesZ v, ,where v, = #, which is
n (log n)?
convergent as p>1 The series Z u,, is convergent if after some particular term
“n v—", [By article 7, sixth from of the comparison test]
Upi1  Vasl
Le, Moy 4 . (n+1){log (n+1)}?, { v, #]

) n (log n)?
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u, >[n+1) [log {n(1 +1/n)}T

logn

lUps1 log
b |

\ logn+————+...
Un o141 n_2n
Upsy \ 1) logn

L 1

- P
U, >(1 +1) logn+log (1 +1 /n]}
n

P

PO

n nlogn

(
-

D
+...
nlogn 2p? logn

1)[1+ P +}
n nlogn

g

n[ Un —1]>1+p +...

Upi1 logn

n[”" —1] R W,
Ups1 logn

n| 2n__1]-1 log n> p +terms containing n or log n
Uni1

in the denominator.
Now as n becomes sufficiently large the L.H.S. and R.H.S. of (1) respectively approach k
and p. Also k> p.
Thus (1) is satisfied for sufficiently large values of n.
Hence the series X u,, is convergent if

lim

n[ Un
L L \Un+1

—1} —1} logn|>1

Similarly, it can be proved as in the case of Raabe’s test that X u,, is divergent if

lim

<1

{n[ “n —1]—1}logn ;
L L \Un+1 ) Q



Part-B : Integral Calculus

9 5]I'F.X VERY SHORT ANSWER TYPE {5 I'D)

(Q.1. Define partition of a losed interval.

Ans, Let I=[a,b] be a closed and bounded interval. Then a finite set of points
P={xg,X1,X3,...,X,} such that a =xp<xy<Xy...<X,_1 <X, =b is called a partition or
division of the interval I =[a, b].

Q.2. Define upper and lower intergrals.

Ans. The infimum of the set of the upper sums is called the upper integral of fover[a, b]and

-b
is denoted by U =_L f(x)dx. Also, the supremum of the set of the lower sums is called the
b
lower integral of over [a, b] and is denoted by L = _[_a f(x)dx.

().3. Define Riemann integral.
Ans. Abounded function f is said to be Riemann integrable, or simply integrable over[a, b],
if its upper and lower integrals are equal; and their common value being called Riemann

integral or simply the integral denoted by Lb f(x)dx.

Q.4. Define lower and upper Riemann integrals.
Ans. Iffis bounded on the interval[a, b] then for every PP (a,b),U (P, f)and L (P, f)exist

and are bounded. Then the lower Riemann integral is defined as fﬂ f =sup L (P, f)and the
P

-b
upper Riemann integral is defined as L it =ill1f UP.f)

Q.5. Find L(P, f)andU(P, f)if f(x)=x, for x €[0,3] and let P =[0,1, 2, 3] be the
partition of [0, 3].
Ans. Let partition P divided the interval [0, 3] into the subinterval I; =[0,1],], =[1,2]and
I3 =[2,3].
Then length of these intervals are given by
8, =1-0=1
8;=2-1=1
83=3-2=1
Let M, and m, be respectively the Lu.b. and g.Lb. of the function fin [x,._{, x, ], then
we get
Ml :1,m1 :0, MZ =2,m2 :1, M3 =3 and ms3 =2
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and

Q.6.

Ans.

Q7.

Ans,

and

Qa.

Ans.

iy g
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3
Therefore U(P,f)= ZM,- 8,.- =M1 81 +M2 82 +M3 83
r=1

=1.1+2.1+3.1=1+2+3=6

3
L (P, f)= Zmr 8,- =mq 81 +my 82 +m3 83
r=1
=0.1+1.14+2.1=0+1+2=3.
2

Computej1 x3 dx.
Let f(x}= x3 ,1<x <2.Then fis continuous on [1, 2]. Moreover, if
d(x)=x* /4 (1<x<2), thend'(x)=x> = f(x), (1 <x < 2).
Hence by the fundamental theorem of integral calculus, we have

4 4
[ra=p@-em=2 -1 =1

4 4 4
Find the upper and lower Riemann integrals for the function fdefined on
[0, 1] as follows :

f(x)= V(- x? ), when x isrational
(1-x), when xisirrational
We have (1 -x2)—(1-x)? =2x (1-x)>0 V x€[0,1]

Therefore, m, =(1-x)and M,. =41 %,
1

2
Now, I_O f—fo (1—)z)c1bz_[x—7}0 _1_5_5
1
B . 2 1 2,1 .1 1. 4, 17w =
=] y{l-x“)dx=ZxVl-x“+Zsin"" x| ==sin"" 1==,—-=—,
Io f .[o ( ) |:2 v 5 :|0 ) =
-1 1
Clearly, .[0 f# I—o ¥f
Hence, FeR[0,1].

Show that the Bonnet's mean value theorem does not hold on [-1,1] for
fx)=glx)=x*.

The function f(x)= x? is not monotonic on [-1,1]since for the interval[-1, 0]it is non-

increasing and for [0, 1] it is non-decreasing. Thus the conditions of the Bonnet's mean value
theorem are not satisfied and hence the theorem does not hold in[-1,1]

Q.9.

Ans.

2
Find L x3 dx, using fundamental theorem of integral calculus.

Here, we have f[x)=x3, 1<x<2
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Clearly fis continuous on [1, 2]

4
Now, if (|>(x)="T (L<x<2)
Then o(x)=x> = f(x)
Therefore, by fundamental theorem of integral calculus; we have
[ a-s@-em=2 L =15
4 4
. S -
Q.10. ShowthatL dx _= 1.3<(2n-1)
(x +a)n+1 2 znn!a(2n+1]/2
oD
1 1 X 1 n_n _—1p
Ans. We have = |tan™" —=| =—F—.===a
'[0 X +a \/E|: \/a_:|0 \/ﬂ_ 2 2

Differentiating both sides n times w.r.t. ‘a’, we get
J- [—1] n! dx = E(—l)“1.3.5.s(2n—1]
0 (42 +a)n+1 2 on 4 2n+1)/2

o [ _n1.3.5.<(2n-1)
0 [X +a)ﬂ+1 2 2]’1 n! a(2n+1]/2

Q.11. If the function f(x)defined by
0, when x isand integer

f(X)={ '

1, when x isnotan integer

Show that f(x)is R-integrable in every interval.
Ans. Consider an arbitrary interval[0,a],wherea >0, a € Z.Then clearly, the function f(x)is

continuous at all points in the interval excepts at points x =1, 2, 3, ..., a, because it is given that
f(x)=0when x is an integer and
f(x-0)=1=f(x+0)
Therefore, the given function f(x) has a finite number of discontinuities at
x=1,2,3,... a in the interval [0, a]. Thus, if each of these points of discontinuity be enclosed in
an interval whose length is less than € /a, then all these points will be enclosed in a non ...

overlapping intervals whose total length is less than £ a i.e, less thane.
a

Hence, the given function f(x)is integrable in the interval [0,a].

Q.12. Evaluate the following lim [i + 1 +...+ l:|
ns>o(n+l n+2 Zn

Ans. The general term is given by (r term) = i
n+r

n n
We have to find lim z i= lim # lim Z
n>w S n+r n-oon[l+r/n] n—)co +(r/n)
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Since the limit of r in the summation are 1 to n, therefore the lower limit of integration

= lim 1=0.
n—>won

Also, the upper limit of integration = lim -1
n—won

1
Hence, the required limit .[0 A dx =[log(1+ x)](l, =log2
a+x

Q.13. Define Riemann integrable function.
Ans. Areal valued function f(x)is said to be Riemann integrable on [a, b]if and only if their

lower and upper Riemann integrals are equal

ie, iff j f= J‘ f

The common value of these integrals is known as the Riemann integral of fon[a, b]and
is denoted by I f(x)dx.

ie, [ rea=[ reo=[" reax
G811 SHORT ANSWER TYPE 1e]V[I5[[+](T

Q.1. Let f{(x)=x,0<x<landlets P = {01,;2 }beaparhhonof[ﬂl],ﬂnd

U(P, f)and L(P, f).
Ans. Let the partition P divides the interval [0, 1] into the subintervals

1 11 13 3
L=0,>IL=",2|I I 1
1[4}2 {42]3 [24]4 [4}
Clearly, the length of each subinterval is %

Now, let M, and m, respectively be the Lw.h. and g.Lb. of the function fin[x, _{,x,],
then we get

1 1 3 1 1 3
My=",My;="M;=" M, =1 and my=0,m,=",mg=",my ="
1 4 2 2 3 4 4 1 2 4 3 2 4 4
4
Therefore, U(P,f]= Z Mr 5,. =M1 81 +M2 52 +M3 83 +M4_ 54
r=1
11,11 31 1 1 1 3 1 5
==, "+ .+ =1l =+ =
4 4 24 4 4 4 16 8 16 4 8
4
and L(P,f]= Z m, 6, =my 8, +my 8, +iny 83 +my B,
r=
1,11 11 31
=0. -+ 4+ 24+ 5
4 4 4 24 4 4
L. 1 3 3
=0+ —+=+ ==,
16 8 16 8
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1 1
Q.2. Let f{x)=xon|[0, 1].Find j_o x dx,and J’_o x dx, by partitioning [0, 1] into n

Ans.

and

and

equal parts. Also, show that f < R[0,1].
Let the partition P divides the interval [0, 1] into n subinterval such that

p= {0 12 FLF B4
n ﬂ n n n

Clearly, here we have m, = g My =— and 8, —1 forr=1,2,..
n n

Now, by definition, we have

L[P,f]=imr8,.=i$.l lzi (r-1)
r=1

r=1 n
=i[1+2+3+...+(n—1]]=(n A, 11
n® 2n® 2n
n n ri
ufp f]=ZMr5r=Z*'*
r=1 r=1 1 1

1 & 1
=—22r S[+2+3+...+n]=

nr=1 n an
1 _
Therefore, j xdx= lim L(P, f)= lim ek 4
-0 |~ 0 n->w 2n

2
Io_lxdx— lim U(P f)= lim Bl %

2l— now 2n

From above, it is clear that

j_lo xdx = .[0_1 xdx

1
Hence, .[0 xdx = ;

n(n +1) n+l

2n

Q.3. Show that if f is defined on [a,b] by f(x)=k V x c[a, b] where k is a

Ans.

and

b
constant, then f e R[a, b] and L k=k(b-a).

Obviously the given function is bounded over[a, b].

Let P={a =xy,X1,X3,..., X, =b} be any partition of [a,b] Then for any subinterval
[%p_1,x,],we havem, = k M, =k

Now, U (P, f]— Z M, Ax, = 2 kAxr =k 2 Ax,. =k[Axy +AXy +... +Ax,]

r=1

=k[(X1 —Xg)+(xz —x1)+... +(Xn —Xp1)]=k(x, —x¢)=k(b-a)

n n
L(P,f)J=%2 m.Ax,.=% kAx, =k(b—a).
r=1 r=1
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Hence L_bf =infU (P, f}=inf {k (b —a)}=k(b—a)
and fﬂf=supL(P,f]=sup {k(b-a)}=k(b-a)
Thus L"’f =fﬂf=k(b—a). Hence f < R[a,b]and L”f —k(b—a).

Q.4. If a function f is defined on [0,a],a>0 by f[x)=x3, then show that fis
4
Riemann integrable on [0, a] and L;’ f(x)dx =‘1.

Ans. LetP= {0 E Q ; (" 1a y— ™ }be the partition of [0, a] obtained by dessecting

n n n n

[0, a] into n equal parts. Then

I, =r th sub-interval = [@, E}
n n

and Ax, =length of I, =g,r=1,2,...,n
n

Let m, and M, be respectively the infimum and supremum of fin I,..
Since f(x) =x%isan increasing function in [0, a], therefore

113 .3 3 3
=w and M,.—r d =1 Dol
n n
4 n
Now  L(P,f)= z: m, Ax, = % [[r -1’ a }:“ z (r-1)
r=1 n3 n n4 r=1
4 s 2 4 2
[13+23+ A-1P1=2 [(" 1)"] =“_(1-1).
n? n? 2 4 n
4

4 2
[, Fexydx = lim L(P,f)= lim “[1-1] ="
-0 n— o n—s>o 4 n 4

n J,,3(]3 a _a4
4

n
Again U(P,f)=2% M, Ax, =X
r=1 r=1

4 a4 r 2 4 2
=a—[13 +23 +...+n3)=a—. Hp+1) = 1+1 .
nt nt 2

1 1 3 a*
j fl)dx= lim U(P,f)= lim _(14, J =2

n— o

Si =" f.fisRi integrable on [0,a]and dre [ ™
mcefnf—_[o f, f is Riemann integrable on [0,a]an I:f(x] x=|, X X_T'
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Q.5. Show that the function f(x)}=sin x is integrable on |:0, g:|

Ans. Consider the partition
p= {0 1 Zj r-1)n rm nw n}

2n'2n”" 20 2" 2n 2

which is obtained by dividing [0, ZJ into n equal parts with length of each subinterval = 21
n

Let I, |:[r L m] be the r™ subinterval.
2n 2n

Now, since f(x)=sin x is increasing m|: 2:| therefore

(r—-1)n

m, =sin
2n

and M, =sin %, r=1,2,..,n

Now U(P,f)-L(P.f)=Y (M, -m, )3,

r=1

_i{ E - 1)1:] _{. nw :|TI:_TC
= sin — —sin >~ "~ sin——-0| —="—
g 2n 2n 2n 2n 2n 2n

For given € >0 there exist m € M such that 2£< € V n2=m.Therefore, for a given there
n

exists a partition P of [0 2} such thatU (P, f)-L(P, f)<e

Hence, the function f(x)=sin x is R-integrable.
Q6. If f(x)=x+ x2 for rational values of x in the interval [0,2] and
f(x)=x 2 | x3 for irrational values of x in the same interval, evaluate the

upper and the lower Riemann integrals of f over [0, 2].
Ans. We have (x +x2] —[x2 +x3 )=x —x¥ =x ¢ —xz]
so that (x +x%)—(x% +x3)>0 if 0<x<land <0 if 1<x<2
If P is any partition of [0, 2], then any subinterval of P, however small it may be, will
contain rational as well as irrational points.
With usual notations, we have for all values of r
M, =x +x2 , iIf O<x<1; M, =x% 133 ,if1l<x<?2

and m, =x% 4x ,1f0<x<1;m,. =X+Xx ,if1<x<2.
1 2
2 3 3 4
=3 ! 2 2.3 3 | xf x x° x
Hence, Io j"[x)dx—j'0 (x+x )dx+I1 (x° +x )dx—[7+?] +[?+—4]
0 1

1 1 8 16) (1 1) 83 11
cog |G Syt | =22 g
[2 3} (3 4] [3 4] 12 12
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2 _1 2 3 A 3
and j_o f(x)dx_jo (x% +x )dx+j1 (x +x%)dx
1 2
ol x2 ¥¥ 1.1 4 81 1 53 5
==+ H | == =g
3 4 2 3| 34232312 12

Q.7. Let function fbe defined on [0,1] by
f(x)= % for 1 <

n n+1

=0for x =0.
Show that f = R[0,1]. Also find Ll f(x)dx.

Ans. Clearly, the points of discontinuity of f are ; ; 1

xsl,neN
n

Also the set of points of discontinuity of f has only one limit point at x =0. Then
feR[0,1]. [using theorem 4]

Now [ f(x)dx= lim Zf” L= lim il[l _L

n—o 1Ar +1)r n—yw ST

1) 1(1 1 1
= lim 1—— +2 === [+... +
n>w|\ 2] 2\2 3 n n n+l

I, 1 1 1) (1 1 1
=lim [[1——+"—+...+— |- —+—+—
n>w(l 22 32 n? 2 23 34 n(n+1)
. 1 1 11111 1 1
=lim [[1+—+...+— |—-| =+=—=+=—-= S
n— oo || 22 nz 2 2 3 3 4- n n+l

14
= lim 1+l+...+i —[l—i]
n—w [\ 22 n2 n+1

. 1 1 T
The series 1 + 5 +... +—2 + converges to ? , therefore
2 n

2
[ fede=tim (14 L s v )1e tm LTy
¢ noo\ 22 n® n>eont+tl 6

Q.8. State and prove Darboux theorem.
Ans. Darboux Theorem : Let fbe a bounded function defined on[a, b]. Then to every& >0,
there corresponds 6> 0 such that

—b b
U(P,f)<L f+¢ and L(P,f)>j_a f-¢
for all partitions P with || P|| <.
Proof : Let £ >0 be given. Since L_b f is the infimum of U (P, f) and fﬂ f is the

supremum of L (P, f)for all partitions P, therefore, for given ¢ >0there exist partitions P, and
B, such that
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U P, f)< L‘” fe (1)

and LB )> f’a f-e. -(2)
Let P; be the common refinement of P; and A,.Then by theorem 3 of article 2, we get

U(P;, f)SU(P, f) and L(Bs, f)2 L(Py, f). «(3)

Therefore, from (1), (2) and (3), we get
U P, fl< J':’ f+¢ and L(P,f]>j'_baf—a

for all partitions P of [a, b] with || P|| <5, whered =|| B || >0.
Q.9. Let fbe a function on[0,1] by

L for <x$i,n=0,1,2
f(x)=42" 2" 41 2"
0 for x=0

Show that f € R[0,1]. Also find the value of f: f(t)dt.

Ans. Here, we may defined the function f(x) as follows :
1..1 1 1.1 1 1 1 1

f(x]=1if1<xsl=—if—<x$—=—if—<xS—= if —<x<
2 2 22 2 22 23 22 2."-1 zn 2?’!-1
and f{o)=0.
Clearly| f(x)| <1,V x €[0,1], therefore, f (x)is bounded on [0, 1]. But fis not continuous
on [0, 1]. The set of points of discontinuity of fin [0, 1] is {0, ; ’iz’ sy in which is an infinite
2 2

set and 0 is the only limit point of this set. Therefore f € R[0,1].
Also, we have

x X m m+l
fredes® s+ f/’:mﬂ F+[7

_J.1/2" om-1 1/2m+12_m J1/2m+2 om+1

1 1 1(1 1 1 1 1
= X | s + = +
2"1-1 Zm 2m 2m 2m+1 2m+1 2m+1 2m+2

1 [ 1], 1 1 1
2m—1 2m 22m+1 22m+3 22m+5

m+1
- x _ 1 |1/2 Sum of infinite G.P.=— %
2m—1 22m+1 1—1/4 1-r
X 1

- 2m—1 B 3.22m—2
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Q.10.Let fbe the function defined on [0, 1] by
0 whenxis irrational,
flx)= -
1 when xis rational.

Calculate J'_lu fand L_l f and hence show that f ¢ R[0,1].

Ans. First, we observe that fis bounded, for evidently
0< f(x)<1V xe[0,1].
Let P be any partition of [0, 1]. Then for any subinterval [x,._1 , x,. Jof P, we havem, =0
and M, =1,because every subinterval will contain rational as well as irrational numbers. Note
that rational as well as irrational points are everywhere dense.

h n
It follows that L(P,f)=X m, Ax, =X 0.Ax, =0
r=1 r=1
n n n
and UP.f)J=2Z M, Ax, =2 1.Ax, =X Ax, =1L

r=1 r=1 r=1

Il f=lim L(P,f)=0 and I_1f= lim U (P, f)=1

-0 n—> o 0 n—» oo

Since J‘fo f[° f,wehave f ¢ R0,1].

Q.11.Write and prove fundamental theorem of integral calculus.
Ans. Theorem (Fundamental theorem of Integral Calculus): Let f € R[a,b]andlet¢ bea
differentiable function on [a,b] such that ¢'(x)=f(x) for all x[a,b]. Then

[} FGx)dx =0 (B)—4 (a).

Proof : Let P={a=xg,%1,X3,...,X, =b} be any partition of [a,b] Now ¢ is
differentiable on [a, b] implies that ¢ is differentiable on each subinterval [x,_;,x, ].

Hence by the mean value theorem of differential calculus, we find that there exists&, in
[%p_1,%-1,r=1,2,...,n,such that

¢ (X,- ) _¢ (xr—1]=(xr _xr—1]¢' (ar ]=(¢]' [E_,,- )'Axr

or $ )0 (% 1)=f &, ).Ax, [ @) =F & )]
or T 0 )bl -)l= T fE)Ax,. (1)
Now élw (%)~ (21 1=0 (X1 )~ (X0 )+ (xz)— (1) +...

r

et (X )¢ (xp-1)
=¢ (x,)—¢ (x0)=¢ (B) - (a).
Ir follows from (1) that

)9 )= 2 _FEr)JAx, -(2)

Taking limit as|| P||— 0,
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we get o B)-¢ (@)=, fx)dx,
since é fE,)AX, tends to I:f(x)dx as||P||— 0.

The result of the above theorem is usually written in the form
b
[, ¥ x)dx=¢ (6) -9 ().

Q.12.State and prove second mean value theorem.
Ans. Theorem (Second Mean Value Theorem) : Let
feR[a,b] and ge R[a,b] and g(x)=0 or <0V xea,b].

Then there exists a number p with m < u < M such that
b b
[ Fxg)dx=p [ glx)ax

where m, M are the bounds of fon [a, b].
Proof : Firstletg(x)=0V x €[a, b].
Then mg (x)< f(x)g(x)< Mg (x)V xe[a,b].
If follows from Cor. 5 of theorem 1 of article 8 that

m_[abg(x]dxsj:f(x)g(x]dxSMJ:g(x)dx

or mf:g(x]dxz_[:f(x)g[x]dxEMJ:g(x)dx

accordingasa<bora>b.
Hence there exists a number p withm <y < M such that

b b
[, F@g@dx=p [ glx)ax.
Now let gx)<0V xela,b].
Then —-g(x)z0V x€]a,b)].
Hence by the above result for some p € [m, M], we have

[ fe-gClde=p ["[-gCNdx or [ f(x)g(x)de=p [ glx)dx.

Q.13.From the definition of a definite integral as the limit of a sum, evaluate

b
j e” dx.
a
Ans. Here, we have f(x)=e”.
Therefore fla)=e"
fla+h)=e®*"
etc.

b x
Now I e¥dx = lim h[e® +e% M 1 g*2h | | g2tk
a h—>0
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where,nh=b—-a andn— o ash— 0
= lim he®[1+e" +e?" 4., 4@ D1

h—>0
han _ nh_
= lim he? €)1 _ lim he? {¢ L
h—0 el 1 h—>0 el 1
b—a _
= lim he? [e 1} [+ nh=b~a]
h—0 el —1
eb? 1 .
=lim e9| e -1 |=e? -¢” [ o P J
h—>0 h h—0

b
Q.14.Evaluate L x2dx, directly from the definition of integral as the limit of a

sum.
Ans. We know that
J’ : f(x)dx= lim h[f(a)+f(a+h)+f(a+2h)+...+ fla +(n-1)h}] (1)
Here f(x}=x> fla)=a?

fla+h)=(a +h)?
and so on.

Put all these values in (1), we get

b
[ x%dx = lim h[a® +(a+h)* +(@+2h)? +... + {a +(n—1) h}*]
a n—>w

whereh— 0asn— oandnh—> b-a
=h1im hina? +2ah {1 +2+3+... +(n-1)}]+h?* [1% +2% +... +(n -1)%].
— w

n(n+1)(2n+1)
6

=nm+n

Using Zn and =n? =

2
I:xz dx = lim h|:na2 +2ah(n_21]n+hﬁ(n—1)n(2n —1)i|

h—> o

=hlim |:[nh)az +a(nh)(n-1)h +%[nh] (n —1]h(2n—1)hj|

g i (18 | Byl 2 g2
—hll)mw[(nh)a +a (nh) [1 n]+62(nh )(1 n][l Znﬂ

=(b-a)a® +a(b—a)? +%(b—a)3 (- asn— o,h— 0,nh— b —a)
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=%(b—a)[3a2 +3(b—a)a +b* —2ab+a?]
1 2 2. L3 3
=§(b—a)(a +ab+b ]=§(b —-a”)

Q.15.(i) Taking f(x)=x, g(x)=e*, verify the second mean value theorem in

[-1, 1]. [Therefore 2 of article 10].
(ii) Also verify Bonnet's mean value theorem in [-1, 1] for the functions
f(x)=e* and g(x)=x.
Ans. (i) Since fand g are continuous on[-1,1], we have f,ge R[-1,1].
Also g (x)>0 for all x e[-1,1]. Hence the conditions of theorem 2 of article 10 are
satisfied. Now

[}, Fe)gydx=[" xe* dx=[xe* —e* Ity =2. (1)
e

e? -1
—
Since fis continuous on[-1,1],it takes every value between f(—1)=-1and f(1)=1.Let
1] =2/(e2 —1). Since e > 2, we have e? >4 = e? —1>3so that0< u<l

It follows that there is a point € in [-1,1] such that f{£)=2/ (ez2 -1).

1 1
and J'_lg[x)dx=.|'_1 eXdx=[e*]'-1=e—e! +

2
Accordingly, we have f(&) El gx)dx=——— — ==, w(2)

From (1) and (2), we have El Fx)g(x)dx = F(E) j_ll g(x)dx.

Thus the second mean value theorem is verified.

(ii) Since g(x)=2x is continuous on [-1, 1] we have ge R[-1,1].

Also f(x)=e” is monotonically non-decreasing and positive on [-1,1]. Hence all the
conditions of the Bonnet's mean value theorem are satisfied. As in (i), we have

[} Fedg@de=[', e xar=>2

e
] f.g(")""=f:"d"=;[1‘“21 f(lJJ;H(deF;(l—nZ).

e2 -4
2
\([e2 —4)_

e
For this value of 1, we then have fl F)gx)dx = F1) J'; g(x)dx.

We choose 1 such that LB % 1- n?‘ ) ie, 112 =
e

Also it is easy to see that 0< n<1, wheren=

Hence Bonnet's mean value theorem is verified.
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1/n
: 1 22 32 n’
Q.16.Evaluate lim 1+—2 1+—z 1+—2 1+—2 ;
n—ow n n n n
1/n
2 2 2
Ans. Letd=lim [[1+1 || 142 [[143 | |14
n—co nZ nZ n2 nZ
1/n
| 1 22 32 n?
= logAd= lim ~|log|1+— [+log|1+— +log|1+— |+...+log|1+—
n—>w R nz nz nz nz

2
= lim = lo 1+ log(1+ d.
b i Z g{ J f g (1 +x%)dx

= [, log (1+x7).1dx =[x log (1 +x? ) - ZX-* &

1+x
dx=10g2—2‘|.01|:1— 12 dx
1+x)

=log2-2[x—tan! x]} =log2—2[1—2]

1(1+x )-1

1+x

=log2- ZI

Therefore, log A= log2+ (n—4)

= log— —[n 1) = A=220"972
Q.17.Evaluate lim n 1 + a +...+i .
nowo |(M+1)(n+2) (n+2)(n+4) 6n*
Ans. Here, we have
Th 1 N 1
e given limit=lim n ) —— = lim —

n—sw 1(n+r)(n+2r] n—w p2 = (L+r /n)(1+2r /n)

13 1

= lim = ) = .[o - dx
n>on g, T 1_|_2_r (1+x)(1+2x)
n n
=J'1 =1 + & dx (Resolving into partial fractions)
011+x 1+2x

1
=[-log (1 +x)+log (1 +2x)Js =[log 1 +2x)]
(L+x]) |p

3 3
=log=—-logl=log=.
EZ g gz



UNIT-V 103

JIq 1] Hel LONG ANSWER TYPE 151D

Q.1. Let the function fbe defined on [ 4:| by

flx)= cosx, when x isrational
" |sin X, when x isirrational
Show that f ¢ R[O, %]

Ans, LetP= {4 :r=0,1,. } be any partition, such that §, =4£.
n n

f 1 T
Now, sincesin x <cosxVxe |:0, Z], therefore

m, =sin (r —1)41 and M, =cos(r —1]41=sin [;—(r -1) :]
n n n

Consider, U[P, f]1-L[P, f]= i [M,. —m_ 15,
r=1

= T _(r-1= (r—l)n n
P e

Tt r-Dr\n _, 1 < T _(r-D=n
—22cos4sm(4 in JM—Z.\E.4HF§1COS(4 S an ]

r=1 n

=2. —[cosa+cos(a+ﬁ)+ .+cosfa +(n— 1)[})]‘»\r1thc:t—E [3=1
4n 4 4n

\/E.ﬂ: ( _1) 2\/5 .
S | B L) L) S ML B o5/ 1|1-2|E |sin®
. T 8n 8n . T n/8
sin — Sin
8n
2.5 1
= lim [U(Pf)-L(P.f)]= lim ~ 8n g "+[1—J"" sin
12— nowo T 4 n,/8 8

:Zﬁsinﬁcos E+E =2\/isin25:\/§ 1—cosE :\/5—1#:0
8 4 8 8 4

Hence, f¢ R [0, "ﬂ
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Q.2. Let f(;nr)zx2 on [0, a], a > 0. Show that f < R[0, a]. Also, find J:' f-

Ans., LetP= { ir=0,1,.. ] be any partition of [0, a]. Then, clearly, we have

n
m, =(r—122az and M, =rzaz
n n
Alsog, o, =£
n
Nisid, L[P, f]= ,-Z1m 5, —E:l (r- ; %=:_3ri r 1)
n(n 1)(2n - 1) <l 2_
n3 6 n
and U(P,f)= im,.ﬁ,.z ZE
r=1 =1 n
=L=i ﬁn[n+1)(2n+1) 3[1+1J[2+1)
n n3 & n n
1) o
HEER for= 1P L(Pf)_ngmm[l_ J[ n) BE)
a 1 a?
and fof "Plhm u(P,f)= lim [1+ J( ) =5
Therefore, fo ¥ =I0 f

o o
which implies f € R[0,a] and I: f :?.

Q.3. Show that f(x)=sinx is integrable on |:0, % 1:] and J';/z sinxdx =1

mm  (-Drrm onn_n
2n°2n”" 2n ‘2" 7'2n 2

Ans, LetP= {0 =

be the partition of[0, ® /2] obtained by dissecting[0, ; 7 ]into n equal parts. The length of each

(r-1)m e
2n ‘2n|

subinterval = /2n and the rth subinterval I, =[

Since f(x)=sin x is increasing in [0, ; %], we have

@and M, =Sil’lﬂ;r=112'--""

m, =sin
Zn 2n
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n n
Now U(P,f)=% M, Ax,. =Z sin® | EF_T sm£+sm2—+ .+sin 2%
r=1 r=1 2n)'2n 2n 2n 2n 2n
sm(a +—dJsm%
We know thatsina +sin (@ +d) +... +sin {a +(n-1)d} =
sin (d /2)
Sin(2£+%'2£JSin:_n Esin (n+1)n_sinE
U(P,f]=£ n n n =2n 4n 4
2n n T
sin — sin —
4n 4n
T . (T = 1 n
L osinl E+ 2| — sm—c05—+cos sin —
_2n [4 4n) J2 Zx/ﬂ{ 4n 4 4n}
sin © sin[n)
4n 4n
s i3
cot—+1|=—]cot—+1|.
e e
Similarly, we can find that
L(P,f)=“[cot“—1}
4n
Now J' f— 11m L{P,f)= lim i(cot——l)
n— o 4n 4n
—tim /4y T o10-1 .+ lim B0 g
n—>ew tan (n /4n}) n—o o 4n 60 0
and [ f=1m Up.f)=tim *[cot® 1|1
0 n— o n—>w4n 4n

. /2
Since .[—0 f=ID f.fe R{ ]andI f=1
2

Q.4. Show that f(x)=3x +1is integrable on[1,2]and L (3x +1)dx = %
Ans. Here, itis clear that4 < f(x)<7 V x€[1,2]

- f(x)is bounded on [1, 2].

Define a partition p ={1,1 +1,1 +E,...,1 +E =2} of[1,2].Let I, be the r subinterval

n n n
of P. Then
I —[1 It e Y ]
n n

8, =length of I =1,r=1,2,...,n
n



106

Q.5.

Ans.

iy .
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Let M, and m, be respectively the supremum and infimum of fin I,..
Since f(x)=3x +1is an increasing function in [1, 2], therefore,

_3(1+Q]+1=4+3(r'1) and M, _3[1+ J+1 —44+F
n n n

Now L(Pf)=3 m 8 =3 H4+3(r‘13},1]
n

r=1 r=1 n

i{ 30 1)} n[4n+n2(r 1)]

r=1 =1

—as 324 s(n-1)]=a+> DR _, 3( 1
2 2 2 2

= [ f)dx= lim L(P,f)= 4+Z 121

r=1 r=1 n, jn m,_1

Also, UP,f)=3 M5, =3 [[1+3r)1}_1 i(4+3—’)=1{4n+§ ir:|

—4+ (1+2+ .tn)= 4+3 ar+1) 4+2[1 1]

2 n
.[1_2 f(X)dX = lim U (P:f) =4 4- =E
Clearly J‘l—z £ dT J-—z Fode

Hence, f(x)is R-integrable on [1, 2] and J' fx)dx —%

If f(x)=cosx, V xe[0,n /2]. Show that f is integrable on [0, x /2] and
Elz cosx dx =1.

Since0< f(x)<1V x€[0,n /2]

Therefore, f(x)=cos x is bounded on[0,n /2].

Define a position P={0, L WL LGIELT o0, F Let I, = U 1)1‘5,1‘11:
2n'2n"" 20" 20 " 2 2 2n Zn

be the r*" subinterval of the partition P, with length 8, = 21 el 2 il
I

Now let M, and m,. be supremum and infimum respectively of fin I,..
We know that f(x)=cosx is a decreasing function in [0, & /2], therefore

=17 4ng m, =cos *

M, =cos
Zn Zn
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U(P,f)= i M b = i Hcos(r;;)n} n}

r=1 r=1 2n
=T cos@ +cc~s—+cc~s2 +...+cos——— (n-1)=
n 2n 2n 2n
cos@ (n 1) B, .sin L1
_ 2 Zn 4n
2n’ sin (x /4n)

cos[ [ 1] ]sm
2 2
cosA+cos(A+B)+... +cos(A+(n—-1)B)=

sin (B /2)
=M 2cos £ [1—1J sin T
sin (x /4n) 4 n 4

= j_"/z f(x)dx=lim U(P,f)=1.2cos"sin "~ =1
0 n—»w 4 4

I i
Also,L(P,f)=)Y.m 8, =), [[cosm}n}=:|:cosn+c052ﬂ+... +cosm]
n

r=1 r=1 2n Zn 2n

sin [ /4n) sin (w /4n)

b (n- 1) | . AW
= 2n+ 2 20" an 4 1
= = (n /4n) 2cos 1+= sinE
4 n 4

= J‘_TZZ f(x)dx =nlimmL[P,f)=1_2cosgsin%=1_

Therefore IO“/Z f(z)dx= IO“/Z Flx)=dx =1
Hence, f(x)=cosx is R integrable on[0,n /2].
Also, Ion/z f(x)dx = Ionﬂ cosx dx =1

Q.6. Write and prove Bonnet's mean value theorem.
Ans. Theorem (Bonnet’s Mean Value Theorem) : Let g € R[a, b] and let f be monotonic
and non-negative on[a, b]. Then for some £ or ne|a, b]

[, fegtde=f@) [ adx or [ fe)gtde=F) [} glax

according as fis monotonically non-increasing or non-decreasing on [a, b].
Proof: [fa =b,the result is trivial. Leth >a and let fbe non-negative and monotonically
non-increasing on [a, b].
Let P={a=xy5,%1,...,x, =b}
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be any partition of [a, b]. Let m, , M. be the bounds of g on[x,_;,x,]and &, any point on
[X;_1,X,]. Then
m.Ax, <g(&,)JAx, <M. Ax,
and m.Ax, < I:’ g<M.Ax,. [Theorem 1 of article 8]
-1

On summing for eachr =1,2,..., p <n, we get

p p p
Ellm,.Ax,. s)ig[gr)Ax,s%M, Ax, (1)
p % p
< <
and §m,Ax,_L gSI MpAx. (2)

Then (1) and (2} give

X p P
_Lp g_ﬁlgﬁr]Axr SZIZ(M,. —my )Ax,

n
S% (M, —m;)Ax, =U(P,g)-L(P,g)

=o(P,g) -(3)
[Notethatifb >a,the inequalities (1) and (2) are reversed but (3) remains the same].

Now by theorem 1 of article 9, _[: gis continuous on[a, b]and hence is bounded on|[a, b].
Let m, M be its bounds on [a, b]. Then (3) gives
D
m-o(P,f)SZg(E,)Ax, <M +a(P,f)
1

Using Abel’s lemma*, we get

b
f(a)[m_m(Pif)]Szl:f[“-::r)g[&:r)Axr

< f@}[M-w(P,f}]. w(4)
Since fis monotonic, we have f € R[a, b].
Also geR[a,b].
Hence fgeR[a,b].
Now feR[a,b]> o(P,f}—> 0as||F||—>0.
-1
Q.7. Evaluate Lw tam7(‘:'2)“11&
x(1+x°)
o -1
Ans. Let u =I tan_ " (ax) dx. 1)
0 x{1+x%)
-1
Here the integrand L(ZX) is a function of two variables x and a. Obviously u is a
x[1+x°)

function of a. So differentiating both sides of (1) with respect to a, we get
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du_d | tan™ (ax) , | _ e tan~" (ax)
da da|® x(1+x2) 0 | da x[1+x)
e 1 1 Fy=f® dx
_'[0 x(1+x2).1+a2lex x-!o (1+x2](1+a2x2]

o 1 az
e iznal
0 |1-a®)1+x%) (1-a®)(1+d?x%)

resolving the integrand into partial fractions

[+o] 2 [+ o
L [tan_1 x] e R l tan 1 ax]
0 0

a ~g? ) 1-a% @
= 1 B @ [E} [Assuming that a is positive]
(1—a2) 2 1-4%|2
, (1-a)= hus 94 = ®
2 1—q? 2(1+ ] da 2(1+a)
Integrating both sides with respect to a, we get
u =g log (1 +a)+C. (2)
When a =0, we have from (1) u =0.
. from (2),0=0+C or C=0.
Putting € =0in (2), we getu =%n log (1 +a).
b |
Hence J': de:£log (1+a),ifa>0
x(1 +x° ) 2
Case when a is negative :
If a is negative, we have 5
du 9 1 [t:-m_1 xlg - g & [tan™" ax]y
da (1-4%) 1-g2 a
= 1 E—g B L tan_l (—w):—E
(1-a)? |2 2 2
_ =
2(1-a)
Integrating both sides w.r.t.a, we getu = —% log(l-a)+Cy. w(3)
Again, when a =0, u =0. Putting these values in (3), we have C; =0.
w
——log(l—a).
5 g(l-a)
x|
Hence [N B ) ™ log (Lea) Ea,
U x ! +x2 ) 2
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CoOsSmx sinmx

Q.8. Evaluate L dx,m>0 and deduce the value of _ED dx.
1+ x?2 1+x?
Ans. Let u= J'w EOSTX v,
1+x2
3 P 2 ;
Then d7u=_'|-°° xsinmx , =_j-000 x“ sinmx dx=—.|'m {1+x°)-1}sinmx i
dm 0 142 x(1+x2) 0 x(1+x2)
— J'°° Sin mx dx + IW SIn mx i = E " j‘w 51n mx d (2)
0 X 0 x(1+x2) 2 0 x(1+x2)
Differentiating both sides of (2) w.r.t. m, we get
d*u o xcosmx © COSmX
dm? x(1+x2) 1+ x>
or (D2 -u=0, whereDEi.
dm
The general solution of this differential equation isu =Ae™ +Be™
U _pem _pem,
dm
w dx -1 ¢ T
Now when m =0, from (1) we have u =_|' =[tan™" x]g =
0 14+x2 2
and from (2), 2, =T,
dm 2

So from (3} and (4), we get g=A+B and —%:A—B.

Solving these equations for A and B, we get A=0and B==n /2

Putting these values of A and B in (3), we get

T ®© COSMX T o
u=—e ™, Hence I = dx He

1+x
Differentiating both sides w.r.t. m, we get
_!: xsinmx . ®o-m jooo xsinmx ;. _® -m
14 1+x2

Q.9. Show that E/z log(o.? cos® 0 +B2 sin? 6)d6 == log (#J

Ans. Letu =I”/2 log (0.2 cos? 8 +p? sin? 0)d6. (1)

2 2
du ¢nf2 20, cos“ O do = Irtlz 2¢, cos” © o

Then — =
do 0 Zcos? g +B2 sin? 9 0 (or.2 —[32]cos2 0 +B2
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20 /2 (@? —p?)cos® 0 +p2 —p2 o

@2 -p*)0  (@®-p*)cos® 6 +p?
[ 2
_ 2o nE gy B ]dﬂ
@2 -p*)"° | (a®-B?)cos’ 0 +B?
=27a /2 -1_ [32 sec? 0 :|d9
(@2 -p*)0 | (a?-p?) +p?sec? o
__ 20 m/f2 -1_M do
(@ -p%) | a?+p*tan? e
R [9—|3-1tan_1 [Btane)]n/z
(@? -p%) @ a g

[Putting B tan 0 =¢ so that Bsec2 0 do =dt]

2o E—E.E =T .Thusd—u= T
2 a 2

=or.2 —p? @ +p do o +p
Integrating both sides with respect to a, we get
u=nlog({a +p)+C. A

From (1), when a =, we have

u :J;tlz log {a.? (cos? 0 +sin? 6)} d6 =_|‘0“/2 loga? do
=gloga2 =x loga.

So putting p=a in (2), we get

nloga =nlog(2a)+C or C=nlog;.

Hence putting € == log ; in (2), we get

u=nlog(a +B)+n log;:n: log(a;B}
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Q.1. Define improper integrals.
Ans. The definite integral Lb f(x)dxis said to be an improper integral if (i) the interval (a, b)

is not finite (i.e, is infinite) and the function f(x)is bounded over this interval; or (ii) the
interval (a, b)is finite and f(x) is not bounded over this interval; or (iii) neither the interval
(a,b) is finite nor f(x)is bounded over it.

Q.2. Define convergence of improper integral.
Ans. Convergence of Improper Integral : The integral I: f(x)dxis said to converge to the

value [, if for any arbitrary chosen positive number ¢, however small but not zero, there exists

a positive number N such that g x)dx —I <g;for all values of b > N.
a

If the integral f(x) has a finite limit then improper integral called convergent and if
having no finite limit ie, limits are + oo, — co then it is said to be divergent and when having
neither finite value 0, + « nor — o, then improper integrals is said to be oscillatory.

Q.3. Test the convergence of (i) fw e* dx; (ii) r_) . e ™ dx.

Ans. (i) We have fm e* dx= lim on e* dx, (By def)

X—y oo ¥
= lim [¢*]%, = lim [1-e*]=[1-0]=1
X—> 0 X—> o

Thus the limit exists and is unique and finite; therefore the given integral is convergent.
(i) We have [ e ™ dx= lim | e dx, (By def)
— oo

X—=wns X

0
—-X
. |e :
=lim |£ | =-lim [e® -e¥]=c0.
X— o X—> w0

—X

Thus the limit does not exist finitely and therefore the given integral is divergent (i.e,
the integral does not exist).

Q.4. Test the convergence of L:O e ™ dx,(m>0).
Ans. We have J‘O“’ e ¥ dx = lim J‘:’ e ™ dx, (by def)

X=rx

—mx &
= lim [e } = lim {—l(e'"“ —1)}=—l[0—1]=1.
x—>w| —m 0 X— o m m m

Thus the limit exists and is unique and finite, therefore the given integral is convergent.
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Q.5. Test the convergence of J@ Hx
= 1+x
Ans. We have = R = lim
'[°°1+x f I" 1+x2 x—>°°IO"1+x x—>°°I°1
= lim [tan ]_x + llm [tan x5
X—> o0
= lim [0- tan~? [—x)]+ hm [tan x—-0]
X—>w

=—(-n/2)+n/2=m.
Thus the limit exists and is unique and finite; therefore the given integral is convergent.

1
Q.6. Evaluate I-1 =

Ans. Here the integrand becomes infinite at x =0 and —-1<0< 1.

1 d—x=lim I_EB+ lim II Zx
_1X2 ge—> 07 >0

1T . 7T
= lim |[-= + lim |-=
€0 X ! g0 X &'

= lim [1—1] + lim [—1 +1}
e—>0| e >0 g’
Since both the limits do not exist finitely, therefore the integral does not exist and is
divergent.

1
Q.7. Evaluate ax

L

Ans. In the given integral, the integrand 1/ Vx becomes infinite at the lower limit x =0.

sxz

Therefore we have

. 1_
g_)o.[0+ f Ell_l’)n [ZI] hm [2- Z\F] =2

Hence the given mtegral is convergent and its value is 2.

Il dx

Q.8. Discuss the convergence of the integral _L: by evaluating.

dx
v1-x

Ans, Here given integral is I

v1-x
It is not bounded at limit x =1

1 1-
So [/ —— dx 58 _ im [-241- " _1im0[—2JE+2]=2.
E—>

V1—x £—>0 v1-x ¢&—0

which is finite a number.
= the given integral is convergent.
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Q.9. Discuss the convergence of the integral J'lw

X372
X
-1/2
Ans, Smcewehavej — = lim Ix“glz = lim 3
X X—>w
2 |y

X
= L || = B | =22 =2 ol
X \/; 1 X— o0 -\/; s 0]
= the integral exist and finite.

=> the given integral is convergent.
COSX

Q.10.Test the convergence of Jj (1-e™*) dx, when a > 0.
x2

Ans. Let fF(x)=22% and ¢ (x)=1—-e*.

We have| %% | < 1 as|cosx|<L

X Xz
cosXx ;
Since I —dx is convergent, therefore by comparison test I dx is also
% x2

convergent.

Again ¢ (x)=1—e~* is monotonic increasing and bounded function for x>a.

Hence by Abel's test [ (1—e %) °*¥ dx is convergent.
1]

X

1
Q.11.Show that L x"1 e7* dx is convergent if n> 0.

1
Ans. Ifn21,then _[0 x"1 ¥ dx is a proper integral because the integrand f(x)=x""1¢~*

is bounded in the interval (0,1). So the given integral is convergent whenn>1.
If 0<n<1, the integrand f(x)= x"1 ¢7¥ is unbounded at x =0, Take glx)=x

Then lim f (x)_ = lim e
x—>0g(x) x>0

n-1

¥ =1, which is finite and non-zero.

.. by comparison test, I()l f(x)dx and E g(x) dx either both converge or both diverge.

1
1 _ton1 4, 1 n1 4, 1 x"
But IO g(x}dx = !0 x dx= Sll_r)no L X' T dx= sll_r)no |:7] s

= lim {1 g } l,which is a definite real number.
e—>0|h n n

1 , L 5l wf e
.[0 g(x)dx is convergent. Hence .[0 x"1 ¢7¥ dx is also convergent.
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1
Q.12.Show that the integral .[) % is convergent.
x1/ (1+x°)

Ans. In the given integral, the integrand f(x) o L is umbounded at the lower

g (1 +x2 )
limit of integration x =0. Take g(x)=1/ X
Then lim M = lim 2 =1, which is finite and non-zero.
x>0 g(x) x—>014x2

.. by comparison test Iol f(x)dx and .[01 g(x)dx

L is convergent
XA s
1
because here n=1/3 which is less than 1. Hence the integral Io 1d7x is also
x1/3 1 +x2]

1
either both converge or both diverge. But the comparison integral Io

convergent.
dx
x1/3 (14 x1/%)
1 _ 1 _ 1
XMy KB K V2 111722 26 1112
5

f(x)is bounded in the interval (1, ) then by p-test u =2 -0= "

0
(Q.13.Examine the convergence of L

Ans. Let f(x)=

We have lim x* f(x)= lim x>/5. 1
X w X x°/6 {1+1 /xllz}

= lim & =1 (finite and non-zero)

x> (] 11 /3172

Since p =5 /6<1, so the given integral is divergent.

Q.14.Examine the convergence of Lm (xi

1+xf'

Ans Wehavero x dx =_|ﬂ x dx + w_xdx
O a+xP P+x)® ° a+x)®

Jw XX is convergent because it is a proper integral. Also, the integrand is
 1+x)? @ +x)?
xdx

L+x)®

bounded throughout the finite interval ] 0, a [, we need to check the convergence of_[:D

X

Let f(x}= then f{x)is bounded in the interval Ja,«[. Takep=3-1=2

(1+x)3
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then lim ¥* f(x)=lim x*.— % = lim ;—L

X—w® X—w (1+X) X—)OO{1+(1/X)}

Since u =2, i.e, >1, therefore by p-test the mtegralI is convergent.

(1 +x)3
Q.15.Show that the integral _E!/Z log sin x dx converges.

Ans. The only point of infinite discontinuity of the integrand is x =0.

Now lim x" logsin x, when u>0= lim M . [from E]
x—>0 x—0 y7H o0
. cot x 1 x” 1 0
=lim —— = lim from —
x=0_pyx k-1 x>0 n tanx 0
1
=Ty —L BALE [y L Haspitsrule]
x-0 P sec? x
=0,ifp>0.
Taking ubetween 0 and 1, it follows from p-test that the given integral is convergent.
Q.16.Test the convergence of the integral _L) L
3
x"(1-x )
Ans. Here, it is clear that the integral f(x)= ke is unbounded at x =0.
3 2
x° (1+x°)
Let b (x)=—L
%3
lim flx) = lim 2 =1, e, finite and non-zero.

x>0 ¢(x) x>0 x2
Then, by comparison test Jlol f(x}dx and _[01 ¢ (x)dx either both converges or both
diverges.
But clearly _[01 d—; is convergent.
Hence, the given mtegral‘[ dix is convergent.
x3 (1+x )
I'(c+1)
(log C]c+1 ’

w x© _f® . =x 5. _[*® _cr. log.c—x o Jdogac
Ans. _[0 c—xdx—jo x‘c n:l'x—_[0 x“ e "1™ dx [cc=e"%¢" ifc 20]

0 C
Q.17.Show that L x—x dx = >0.
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=I°° g+ D-1 —xlogec 5 _ I'(c+1)

0 Uoge C)C+1

[ I xR gy - 1-()wheren>0k>0}
o '

Q.18.Evaluate Lw t3/2 (1-e7t)dt.

172 -172
-t
—1/2} IO (e )[—1/2J

=0+zjo°° et (072t gy

Ans. J‘:’ B2 _etydr=(1-e7")

=2I'(1/2) [By definition of gamma function]
=2vn.
m—1 —-x n-1
Q 19.Prove thatL) de =0,m>0,n>0.
1+x

Ans. The given integral 1s—.[0 [1+x]m+n ————dx !0 (1+x)m+n

=B (m,n)-B{n,m)=B(m,n)—-B (m,n)=0.

EIAIEIEY SHORT ANSWER TYPELTTES (1D

x+2
x{x+1)

Ans. Here, the upper limit of the integral is infinite. So it is first kind of improper integral.
Now

Q.1. Evaluate f

J-°° x+2 J'b x+2
1 x(x+1) b—)no 1x(x+1)
= lim J [ ] (By resolving into partial fraction)
b llx x+1

b
Z bZ o 5
= lim (log——| = lim |log——+1lo
b—o>w g)(+]. b—» 0 gb+1 £

= lim |log +log2 |=logw +log2=cw +log2=co.

bo w

Here, the limit of integral is infinite so the given integral is divergent.
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Q.2. Discuss the convergence of the following integrals by evaluating them
dx w dx
@[ ® 37z

Ans. (i) We have Lm \dF = imm J:jf , {By def.)
¥ X

127*
= lim jfx‘l/z dx= lim [’i/ ] = lim [2vx —2]=c.
1

X—»w X— o X—>w

Thus the limit does not exist finitely and therefore the given integral is divergent (i.e,
the integral does not exist).

(ii) We have Jm B = x dx

| an xl)mm Ii 7 , (By def)

12N x
= lim IXX_S/Z dx= lim | % _Sre
x> w-l x»>o| -1/2 " xo| Jx

1
2
= lim [-—=+2|=2.
Thus the limit exist and is unique and finite; therefore the given integral is convergent
and its value is 2.

Q.3. Test the convergence of the integral Lm COSX e,

x% +a?

Ans. Here f(x)=%.Letg(x)= T
X +a x“ +a

Obviously g(x) is positive in the interval (0, «).

We have| f(x)|= prome | |cosmx] < ,since|cosmx| <1
x2+a?| x*+a? x?+a
Thus| f(x)| < g(x)when x > 0.

cosmx

.. by comparison test, I: dx is convergent if I: is convergent.

x% +a
X

o dx . o dx . 1 14X

But I = lim I = lim |[~tan 12
0 Xz +t12 x— o0 Xz +a2 X—w|a alp

Xz +a

= lim |:1 tan~1 X 0] =1 .T _ a definite real number.

xowla a a 2
J'°° dx
0 2

X" +a

cosmx

0
is convergent. Hence .[0 dx is also convergent.

Xz +a
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Zm
Q.4. Test the convergence of the integral L 7ndx, where m and n are
1+x
positive integers.
Ans. Leta>0.We have
x2m Zm
I r dx +I dx.
1+x%" 01+x2" b gt
The first integral on the right hand side is a proper integral and so it is convergent.
Zm
Therefore the given integral is convergent or divergent according as I dx is
1+x°"
convergent or divergent.
2m
To test the convergence of Iw dx,let us take L =2n-2m.
4 14+x"
2m 2m
We have lim x". = lim x27~2m X = lim & =1,
xow {4y xow X2+ /%) x—>°°1+(1/x2")

which is finite and non-zero.

". by p-test, the given integral is convergent if u>11ie, if Zn — 2m >1 which is possible if
n>msince mand n are positive integers. Also by p-test, the given integral is divergent ifu <1
ie, if2n-2m<1ie, ifn <m since n and m are positive integers.

sin mx
Q.5. Show thatL 7zdx converges absolutely.

a’ +x
Ans, If [©| S gy s convergent, then the integral I Sk dx will be absolutely

a’ +x% a’ +x
convergence.
Let f(x)}= 27X |ihen f(x)is bounded in the interval ]0, « [, we have
a +x
flx)= S mx =|smmx|s 1 ,since|sinmx | <L
a? 4a® | a?ixd a® ix’

.. By comparison test, J:D f(x)dx is convergent if I(:O dx is convergent.

+X
But J'w dx J' dx
0 az+x2 X—>°° 02 donc®
X
= lim 1t;,m‘if = lim ltan‘lf_g =l_E
xowx|d aly, x>=|a a a 2

which is a definite real number.
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I: £x 5 is convergent. Hence I: F(x}dx is also convergent and so the given
a +x

integral is absolutely convergent.
/2 COSX

Q.6. Test the convergence of the integral L dx.
x2
Ans. Here, the integral f(x) = €95X 45 unbounded at x =0.
X
1
Let d(x)=".
%2
Then lim fx) = lim {S95X 42
x> g(x) x—seo| x

= lim cosx =1, finite and non-zero.
X—» 00

.. By comparison test the integrals J; o f(x)dx and I;/zcb (x) dx, either both converge

or both diverge.

/2 nf2 1 nf2 1
But jo o (x)dx = jﬁ xzd —hll_r)no x—zdx

N [ 1T 2.1
=lim|-= = lim Z =,
h—0[ X |p ho0| = h

% J':/Z ¢ (x)dx is divergent.

Hence, the integral I i cosy dx is divergent.
X
Q.7. Discuss the convergence of the integral .[:D mez dx and show that it will
a® +x

be absolutely convergent.
Ans. Since given that I = _[0 Sty

If jo

dx will be absolutely convergent.
a? +x

sin mx
~_——_|dx is convergent.

a+x

(Since every absolutely convergent function is convergent)

sin mx

a +X2

Let f(x}= then f(x)is bounded in the interval (0, «).

|smmx| 1

flx)= <
a’ +x%*  a? +x%
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Now we use comparison test
1

(12 +X

X

0 I . x  dx . 1 1 X . 1 1 X

I d = lim I d = lim |[=tan 12| = lim [Ztan 120 T
0 42 4x2 x2-50%0,2 2 xow|a a x—w|a a

J': f(x)dx will be convergent if I; is convergent.

a

= a finite and real number.
= convergent.

Hence, I:J f(x)dx will be convergent.

€OSox —cospx
Q.8. Prove that J:o P
X

Ans. Wehave [ cosox —cosPx [ cosax gy _ [ cos Bx o
d X a X ] x
The function f(x}=1/x is bounded and monotonically decreasing for all x 2a and

dx is convergent where a>0.

lim 1=0.
X—>om X

Now, ‘Ecosaxdx si

lo]

s I :
=|—(sinax —sin aa)
o

J': cos ax dx | is bounded for all finite values of x.

Similarly ‘ J': cos fx dx |is bounded for all finite values of x.

@ COS X

By Dirichlet’s test both the integral J'a dx and I: cospx dx are convergent.
X X

Hence, the given integral (being the difference of two convergent integral} also
convergent.

1
Q.9. Discuss the convergence of the integral L x"1 log x dx.
Ans. (i) Since lim x” log x =0 where r >0, the integral is a proper integral, whenn>1.
x—>0

(ii) When n =1, we have

1 . 1 : 1
log x dx = lim logxdx=1lim [xlogx—x
.[0 & e—)OL & a—)O[ 8 ]e

=lim [-1—-¢loge +g]=—1.
£—>0

. the integral is convergent ifn=1.
(iii) Letn<1and f(x)=x""' log x.

Then lim x* f(x)=lim x*** 1 logx
x—0 x—0
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=0 if p>l-n 1]

and =—00 if p<i-n =74

Hence when0< n<1,we can choosepbetween 0 and 1 and satisfying (1). The integral is
therefore convergent by p-test when O<n<1.

Again when n <0, we can take p =1 and satisfying (2). Hence by p-test the integral is
divergent when n < 0.

Therefore from (i), (ii) and (iii), we conclude that the given integral is convergent when
n>0 and divergent whenn <0.
Q.10.With certain limitation on the values of a, b, m and n, prove that

©  _fax?+bhv2 _ '(m)I'(n
E’Le(ax +hy?) y2me1 2t g g, ( ]()_

4a™p"
Ans. Let | =J';o j:e'(axz"'byz } x2m-1 21 gy gy 1)
I=‘[go g y2m-1 dxxf: e"by2 vy ldy=1, xL wf2)
where I =J': e~ x2m1 gy w(3)
I, =J‘:J e_by2 y1 gy, ..(4)
Putax” =t,x=(t /a so thatdx =dt at then equation ecomes
2 (t /a)? so thatdx =dt /2Vat th (3)b
(2m-1)
o 4| € 2 dt 1 = ¢ m-1
I = et[—] =——| e "t "dt
IO a 2\/& Zam IO
=l::) [By definition of gamma function taking n>0,a >0]
2a
Then I, =mifn>0,b>0.
2p"
~. From (1) and (2), we get
I =Il X Iz =w_
4a™p"
1xm1g-x)*1 1
Q.11.Show thatL dx=—————— B(m,n).
(a+bx)™" (a+b)".a"

Ans. The given integral
m-1 n-1 m-1 n-1
o ot il S a‘x=J.01 X [ —1
0 (a+bx)™*" a +bx a+bx (a +bx)?

Put X =Lsothat(a+bx]'1_x'bdx= dy
a+bx a+b (a +bx)? a+b
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1 0 = dy
(a +bx)? a(a+b)
1-x 1a-ax _1|a+bx—ax—bx | _1 1_x[a+b) _1-y
a+bx aa+bx a a+bx a +bx a

ie,

Further

a

Also when x =0, y=0and when x =1, y=1

A ()
0\a+b a a(a+b)

=;J‘1 ym_l (1_y)n_1 dy:M
(@+b)" .a" *° (@+b)" .a"

Q.12.Show that if m, n are positive, then
[ (x-a)y™* (b-x)""' dx =(b-a)™"* .B(m,n)
I'mDn
T (m-+n)
Ans. The given integral is Ll (x-ay" 1 p-x)""tdx

=(b _a]m+n—1

Put x =a +(b —a) y so thatdx =(b—a)dy.
Also when x =a, y=0and whenx =b, y=1

L” (x—a)""L (b—x)""1 dx
= [} (B-a) yI" " b-a-(b-a) yI"" . (b-a)dy
=[B-a" .y -t -y B -a)dy

=(-a)"" ! [y -y dy=(-a)™* " B(m,n)

=(b_a)m+n—1.1"m1"n . B(m n)=rm1-n
I'(m+n) ’ I' (m+n)
2 3,-1/3 2n
.13.Prove that | (8—x de=——.
Q [ 8-x*) 303
Ans. Letx? =8t, then x =2t /3
dx=§t_2/3 dt,

whenx=0,tox=2,t=0tot =1
20 313 5l o173 2. -2/3
jo(s 3 dx-IO(B 8t) 5t dt

—(8)'7. gj'ol 2R (1) at
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(3 )
Lfamt g _pem-tg 1p(12) 1 13/ A3
340 3

()

_1 T =21t
r@ 34,7 33
3

el
3

Q.14.Show that B(n,n+1)= 1T (n)z and hence deduce that
2T (2n)

1/4
J:/z( 1 1 J cos0do = {I‘(1/4}.

sin3 9 sin?0 2V
C@)I'(n+1) T (n).nI'n
T (n+n+1) (2n)T (2n)

Ans. Wehave B (n,n+1)= (1)

Bl +1)_1 W) [T (p+1)=pT (p}]

I' (2n)
1/4
2
Let =2 . 1 cos0 db. (2)
e sin®0 sin?@

Putting x =sin 0, so that dx =cos0 d0 in (2), we get

1/4 1/4
Izr[l_lJ dxzﬁ[l—xJ dx
0| 3 2 x3

X
=.[01 x_3/4' (1 —X]1/4 dx =I01 x(llq') -1 (1 —X][5/4]_1 i
=B (i. i), by definition of beta function

11, \_1Ta/40 0 T0/4°
3(4 4 1) 2 r(1/2) =

Q.15.Show that I = g vsin@ do. E/z

Ans. We know that

ﬁ

r[—p;’lJJE
E/z sin? do =

Na (1)
- (M]
2
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F[UZHJ‘E'F[_UZHJ‘/E
I:I;ﬂ sinlﬂe.dﬁ._[:ﬂsin_llzﬁdez z £

2r(1/2+2}2r[—1/2+2]
2 2

_I'(3/4)vrn C(1/4)Vn _ aT(1/4) _ =C(@/4)

2U(5/4) 2T (3/4) AT (1+1/4) 4.1/4.T(1/4)
m-1 n-1
Q.16.Evaluate J: W‘dx
+x

m-1 n-1 m-1 n-1
1 1
Ans. We have I $dx— X7 dx I dx

= ; (1
{1 +x]m+n 0 [1+x)m+n 0 (1 +x]m+n (1)

Now in the second integral on the R.H.S. of (1), we putx =1/ yso thatdx=—(1/ y2 )dy;
also whenx — 0, y— o and when x =1, y=1.

[t ot [-lsz’]

0 (1+x)m+n (1+1/y)m+n y
1 +n g m-1
:_.‘ A y—1 2 :JT 7 &y
) A s @+
xm -1 . b _ b
= L mdx. [ J’a f(x)dx = _L f(y)dy:|
Now from (1) we have
m-1
de=| —— dx+| —— —dx
.[0 (1+x]m+n -[0 (1+x]m+n -[1 (1+x)m+n
i xm—l
= Io ———dx, by a property of definite integrals
(1+x)m+n
=B(m'n]:w
I' (m+n)

Q.17.Show that Lm cos(bz/™)dz =in I (n+1). cosn?n.
b
Ans. Putz/" =x ie, z=x",sothatdz=nx""1 dx.
Io cos (bzlln)dz I cos (bx).nx"~ “lax = nJ' x"1 cos (bx)dx
=real part .::frz_[0 e xn—1 gy

=real part ofn— "~ i
(ib)"
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=real part ofL[n).(cosln +i sin 111.-)""
B" 2 2

=real partof —— - ['(n+1) (cos —isin mr]
b 2 2

= T (n+1). cos('m].
b" 2
Q.18.Express ' (1 /6)in terms of I'(1 / 3).

Ans. By duplication formula, we have

rmMrn+1/2)= zi?r/fl (1]
Puttingn=1/6in (1), we get
F(1/6)F[2/3)=W F(1/6)=W. -(2)
2 2°7r(2/3)
Alsa, we know that
I'(A)T (1-n)= -(3)
sinnr’
Puttingn=1/3in (3), we get
T(1/3)T(2/3 —7—2 V3
@/3)r(2/3) in(n/3) n/
2n
r/3)=——"-"—. ..[4
(2/3) s (4)

Substituting the value of I (2 /3) given by (4) in (2), we get
JrT(1/3) V3T (1/3)_ 43
2723 2n 213 [x

JI91 ] E LONG ANSWER TYPE [IIEHI1D)

—x sinx

T(1/6)= [T /3P

Q.1. Test the convergence of f: e
X

ot sin x
X

e=X sinx
b

Ans. We can write I: e * SINX T dx Io T dx +Il dx.

Since lim e ~* S X =1, therefore the integrand e i is bounded throughout the
x—>0 X X

—X

finite interval (0, 1). So j; e* S

—x sinx
X

dx only.

Thus we need to check the convergence of J:O e
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Let f(x)=e~* SIMX Then f(x)is bounded in the interval (1, «).
X

Take g(x) =e *. Then g(x) is positive in the interval (1, o).
Wehave | f(x)|= ‘ g x SINX

=e_"‘.|sinx|.1
X

Se‘x,since|sinx|$1and1$1.
X

Thus| f(x)| £ g(x) throughout the interval (1, «).

. by comparison test J'lm f(x)dx is convergent if J'lw g(x)dx is convergent.

a0 _ [+ 3] —-X _ . oo -x _ . B —XX
Now .[1 g(x)dx-!1 e dx-xll)mwjl e dx-xll)mm[ e "l

= lim [-e X +e 1]=0+e7! =1/e,
X

which is a definite finite number. Hence Lw g(x)dx is convergent.

0 : © _ysinx , .
J'l f (x)dx is also convergent. Hence .[0 e * 2= dx is convergent because the sum
X

of twe convergent integrals is also convergent.

2
Q.2. Show that the integral Ln e * dx is convergent.
Ans. We have J'w e_"‘2 dx = Il e_"‘2 dx + Im e""2 dx.

0 0 1

1
Obviously Io e - dx is a proper integral because here the interval of integration (0, 1)

-

is finite and the integrande ™ is bounded throughout this interval. Therefore this integral is

convergent So we need to check the convergence ijlao e_xz dx only.

Let f(x) =e_"2 . Take g(x) =xe_"2 so that g(x) is positive throughout the interval
(1,0). We have | f(x)|=e™* <xe™™ ,sincex >1.
Thus| f(x)| < g(x) throughout the interval (1, «).

0 = 2 % Q0 = B
.. by comparison test J.1 e 3 dx is convergent if .[1 xe 3 dx is convergent.

X
Now J‘m me_x2 dx = lim Ixxe_xzdx= lim 1 e_"'2
1 x—> w9l X— o 1
= lim —le_"2 +1fz_1
x>wl 2 2

= % el , which is a definite number.
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&47
w — ] m — -
.[1 Xe 3 dx is convergent and so _[1 e 3 dx is also convergent.

oo
Hence the given integral .[1 e < dx is also convergent as it is the sum of two convergent
integrals.

Q.3. Discuss the convergence of the given integral | x" 1 ¢X dx, if n> 0,
4 24 (4

Ans. Here given that I= J'Om x"1e™gx
1
I=I xX" e ¥ gx +J'aD x"le X dx
0 0
1
Let I =.[0 x" e ¥ dx

0 = =
I, =J'1 il

Here for discuss the convergence of given integral, we use p-test in [; and comparison
testin Iy.

1. pnq
11=J'0x" 1o~ dx

F(x)=x""1 e at x =0, will be unbounded.
Let glx)=x""1
lim f_ lim e ™ =1
x>0g(x) x>0

By comparison test if g(x) is convergent then f(x) will also be convergent of if
divergent then f(x) will be divergent.

1 _ 1 n1 BN T 1 na
J'og(x)dX—J'ox dx-Jlr)no . X dx

1
n n
= lim = = lim 1—8
e2>0| n e—>0|n n
E

=1, which is a finite real number.
n

= .[01 g(x)dx is convergent.

= f(x)will be convergent.
Now I, =_|'(;‘o x" e gx

How, f(x)=x"" e*.It is bounded in the interval (1, «).

p n-1 p+n-1
, W X
lim x* f(x)=1lim =~ = 1lim = =0.
x>0 x>0 X X x2
I+x+——
21
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1

m —_— —_— ]
For u>1, we have L x""" 7 dx is convergent.

From the above result we can say I will be convergent because I; and I, both are
convergent.

a-1
i i : b
Q.4. Discuss the convergence or divergence of the integral _[;D 1 dx.
+ X
Xa—l
Ans, Let f(x)= .If b>0, we can write
1+x
- xa—l b xa—l - Xa—l
2 dx=| Z—dx+ dx =1, +1,,say.
0 1+x 0 1+x Ib 1+x N N

Leta >1.Then f(x)is bounded throughout the interval (0, b)and so the integral I; isa
proper integral and hence it is convergent. To test the convergence of the infinite integral I; in

this case, we have

xa—l XM +a-1
lim x* f(x)= lim x*. = lim

X—> x> o 1+4x x>» x+1

=1, if p+a-1=1 ie, ifp=2—-a which is <1sincea >1

Hence by p-test I, is divergent.

. the given integral is divergent ifa = 1.

Let a<1. Then in the interval (0,5), f(x) is unbounded only at x=0. Also f(x) is
bounded throughout the interval (b, o} Therefore in this case I; is an improper integral of the
second kind and I, is an improper integral of the first kind. To test the convergence of I, we
have

i 5 ﬁ - xtta-l _ 'ifu +a-1=0 ie.,
x=0 x+1 x-»0 x+1 ifu=1-a.

If we take 0< a <1, then we have 0< p<1 and so by p-test I; is convergent. If we take
a <0, then p >1 and so by p-test I is divergent.

To test the convergence of I, when a<1, we have

lim x* .ﬁ = lim 72(” et =1,if BHE-L=] R
X—>® X+l zx-oo x+1 ifp=2—a whichis >1sincea<l

Hence by p-test I, is convergent ifa<1.

Thus I, is convergent if a < 1. But I is convergent if 0<a <1 and is divergent ifa <0.

.. the given integral is convergent if 0< a<1 and is divergent ifa <0.

Hence the given integral is convergent if 0< a <1 and is divergent ifa >1 or ifa <0.

1
Q.5. Discuss the convergence of the Beta function L x™ 1 1-x)"1dx.

Ans. Let f(x}=x"1(@-x)" .
The following different cases arise :

(i) When m and n are both 21, the integrand f(x)is bounded throughout the interval
(0, 1) and so the given integral is a proper integral and is convergent.
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(ii) When m and n are both< 1, the integrand f{x)becomes infinite both atx =0and at
x =1.In this case we take 0<a <1 and we write

1 m-1 n-1 _ m-1 _ -1 1 m-1 _ -l
on 1-x) dx—_[:x (1-x) dx+Lx (1-x)" " dx

= Il + 12 , Say.
In the case of the integral I, the interval of integration is (0, @) and so the integrand is
unbounded at x =0 only. To test the convergence of I; , we have
lim x* . f(x)=lim x* .x™ 1 (1-x)""1
x>0 x—0

= lim x* "1 -x)t
x—=>0
=l ifp+m-1=0ie, ifu=1-m.
If we take 0<m<1, we have 0< p<1and so by p-test I; is convergent. [fwe takem <0,
we have pu >1 and so by p-test I, is divergent.
Again in the case of the integral I,, the interval of integration is (@,1) and so the
integrand is unbounded at x =1 only. To test the convergence of I, we have

lim (1-x)*.f(x)= lim ([1-x)* x™1(@-x)"1
x—>1-0 x—>1-0

= lim (l—x**"-1xym1
x—=>1-0

= lim P 1 T

= lim g* 771 (1 -¢)™1
e—>0
=1, ifu+n—-1=0ie, ifp=1-n.
If we take 0< n<1,wehave0< p<1and so by p-test I, is convergent. If we taken < 0,we
have p 21 and so by p-test I is divergent.
Thus if m and n are both< 1,the given integral is convergentonly if0< m<land0<n<1.
(iii) When m<1 and n 2 1, the integrand f(x)is unbounded only at x =0. In this case
by p-test, the given integral is convergent if 0< m<1 and is divergent if m <0.

Again if m>1 and n<1, the integrand f(x)is unbounded only at x =1. In this case by
p-test, the given integral is convergent if 0< n<1 and is divergent ifn <0.

Hence from (i), (ii) and (iii) it follows that the given integral is convergent if both m and
n are >0 and divergent otherwise.

Q.6. Evaluate the following integrals
o 1 I
M [, x* (1-x)* dx [ y*a® -y* dy

(iii) j:x (8—x3)/3 dx i) [ 1’: d:e .

Ans. (i) We have
E 2t (1 —x)2 dx =J'01 N 1 —x)3_1 dx
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_TEIF(@E)_4121_ 4ix2 1

T(5+3) 7! 7x5x4lx6 105
(ii)J.:y4 \faz —y2 dy.

Ist Method. Let y2 =a’t so that dy=

a’dt _adt

2y 24t
I=[ (@%)* \(@? —m%[%}

6
_a 1320 172
= j'ot -ty dt

,then

6

-2 [ eCA @ -0)PA1 g

_a® T (5/2)r (3/2) _a®3/2.1/2Vn.1/2Vn _na®
2 I(5/2+3/2) 2 3! 32

IInd Method. Let y =a sin 6, so that dy =a cos6 d0, then

I=J':/2 a* .sin? 9 xa cosO xa cosd do

_a®T5/203/2_ ¢3/2.1/2Vnx1/2n __

21_[4+§+2J 2x3!

a®/32

(iii) Let I; x@-x3)P dx=1
Put x> =8t or x =2¢/% so thatdx =§ £7213 gt

= jol 2t13)(8-8t)"3 (2/3¢72P at)
_8T(2/3)T(4/3)_8T (1-1/3)C (1+1/3)

3 ['(2/3+4/3) 3 T'(2)
r2=1!=1
Bra-1/3.lray=8_* 16 |.. ra+p=prp)
3 3 9sinn/3 243 n
I'l-n)T'n=—
SINn nw©
Gjlet r=["*%
0 148

Put x® =y or x=_yl/6
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Sothat dx =%.y"5/6 dy

IO 1+y __J-O
(1/3] =1

1 Jo (1+7y]2/3+1/3 =EB[1 /3,2/3)
_1T(A/3)T(2/3)_1TAL/)TA-1/3)_1 =
"6 I'(1/3+2/3) 6 o) 6

o TC
Silt-
3

[ pr - n)_smnn}

_1 T 1211:_11:

6 (V3/2) 63 343

in-1 n-1
- sin” " xdx _ 2
2 @ '[:! (a+bcosx)" (a®-b%)"/?%

o [ Jsinx _[C@3/4)F
[5+3cosx]3/2 2V2 ]

Ans. (a)Letl= I" sinn—1x dx f: (sin x)"* dx "
(a +bcosx)" (@ +bcosx)"

- [2 sin %cos ’Z‘Jn_l dx n
efes? (3o (3 oa{ot (3]0}
o e
J _

B(n/2,n/2).

[By (1)]
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el tan"? [XJ sec? (X)dx
_ 2 J'OO 2 2

(@+b)" [ a—b }
2

1+272 tan?
a+b

(n-2)
[a+bt 2 a+b

2n-1 a-hb a-b

T (1+£)"

Putgtan =t,. Zutanxsec25 d—x—dt
a-+b 2 a+b 2 2

_ 2n—1 I t["/z) 1 e on 1 B(E EJ
[(@a+b) (@ -B)"2 ® @+ 2472 (% _p2y/2 \2°2)
(b) Takingn=3/2,a =5and b =3, in part (a), we get
xsinG2 1 y gy _ [2)[3/2)_1 B[B 3]
0 (543c0sx)?2 [25-9%/% (44
_V2 T(3/4)T(3/4) _~2{T B/4)Y
23 T (3/4+3/4) 8T (3/2)

_V2{L@/4Y _ e/
8.1/2+n 2v2n o




UNIT

(290N VERY SHORT ANSWER TYPE Jo]!/ 355 e]\'

Q.1. Define Reclification.

Ans. The process of finding the length of an arc of a curve between two given points is called
reclification.

Q.2. Define surface of revolution.

Ans. When a plane curve is revolved about a certain fixed line lying in its own plane, a
surface is generated. This surface is called a surface of revolution.

Q.3. The volume generated by the revolution of an ellipse having semi axes a

and b about a tangent at vertex.

2 2

Ans. Let the equation of an ellipse be x_z +y_2 =1.

a® b
The centroid of this ellipse is (0, 0) and the area is mab. There are four vertices (+a, 0)
and (0, = b). Now first we revolve the ellipse about tangent at (a, 0), then the distance of the
centroid (0, 0) from this tangent is a.
Thus the generated volume = (area of ellipse) x (perimeter of the circle of radius @)
=nab x 2ma =22 a?b.
Similarly, if we revolve the ellipse about the tangent at (0, b), then the distance of the
centroid (0, 0) from this tangent is b. Thus the required volume is
= (area of an ellipse) x (perimeter of the circle of radius b)

—ntab x 2nb = 2n% ab®.

b
Q.4. Evaluate the following double integral _[;1 L (Jur2 + yz )dx dy.
b
b .2 2 _ 2 .V3
Ans. WehaveEJ-O (x“ +y ]dxdy—fg[x y+3} dx,
y=0
(integrating w.r.t. y treating x as constant)

3 3 .3 | 3
= [0[px? + 2 | ax=[p % +2 x _ba’ Ba 1,020
o 3 3" 3 33

3

Q.5. Evaluate L L — g dxdy.
x2 4+ y?

Ans. Wehave.[1 % dxdy L [..‘o 7, }
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X
= J‘z [1 tan~! y} dx = .[2 [1 (‘can_1 1-tan™? (0]] dx
1| x X|y0 1] x

2
_1 i ‘i‘:_“[] gx]1 _f[logZ—logl]——‘n:logZ

Q.6. Evaluate J;z Ly/ 2 ydydx.

Ans. Wehave‘[:j;ﬂydydx I [X]O/Zdy I1 [1

d
2)’]}’

122 1|1
dv==|2
2 y 7 2|:3

Q.7. Evaluate E: _[;'sm eir' dodr.

Ans. LetI=J';J:sm9rder=I:[ESinerdr]d9 =“22j;‘ sin2 0 do

2
=a—x2‘|'“/2 sin® 0do =a? &
2 0 4

2 4
yﬂ =223 -13)=7/6
, 6

Q.8. Prove that when x and y are positive and x + y< h,
[[ Fax+y)xt y ' dxdy=—"
sin In

Ans. The given integral
I=_” Frix+y)xi=1 yO0-0-1 gy gy, where 0< x + y<h

_riora-n 1+(1-D-1
T+1-) fy £ du

by Licuville’s extension of Dirichlet’s theorem

C{Or -1k,
r7(1);,1’( wydu=_T_

ClZo o] 81 SHORT ANSWER TYPE Jlo]¥[2q) (o))}

.1. Find the len of the arc of the parabola y? =4ax
Q p y

extending from the vertex to an extremity of the
latus rectum.
Ans. The given equation of parabola is
y2 =4ax. (1)
The point 0 (0, 0)is the vertex of the parabola and the point
L (a,2a}is an extremity of the latus rectum LSL’. We have to find
the length of arc OL. Differentiating (1) wrt x, we get
2y (dy /dx)=4a. ik

[f @] = Si:ﬂ L)~ FO))
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dyfdx=2a/y or dx/dy=y/2a.

;:ow [df =1+(de 147

dy dy 4q?

=L2 (4a? + ). -(2)
4da
If ‘s’ denotes the arc length of the parabola measured from the vertex O to any point
P (x, y)towards the point L, then s increases asy increases. Therefore ds/dy will be positive. So
extracting the square root of (2) and keeping the positive sign, we have

9 _1J@a?+y?) or ds=2(4a?+y*)ay.
dy 2a 2a

Let 51 denote the arc length OL. Then
s, 2 1 22
IU ds = " z\f(tla + y“)dy
2a

1 Yy 2 2 4q? \ (4q2
or s1=-1 (4a’ +y ]+_2 log {y+V¥ (4a® + y*}}
0

=2i[ml (4a? +4a?)+2a? log {2a + (8a2)} -0 242 log (2a)]
a
=zt[2\f 2a% +2a% log {(2a +2~ 2a) /2a}]

=2;2[\’2+10g (1+V2)]=a[V2+log (1 +V2)]
{

eX -1

e* +1

fromx=1tox=2.

Q.2. Find the length of the curve y=Ilog

e

Ans. We have y=log =log(e* —1)-log (e* +1).

e* +1

X X X
Differentiating w.r.t. x, we get & =& € - Ze :
dx e*_1 eX+1 e?*-1

If s is the arc length of the curve in the direction of x increasing, then

2 2 % Y 2x
dx dx e2x -1 (EZX _1)2

2
(@ -1)? +4e?* (e 41
(eZX _1]2 er _1

ds e?* +1

dx er =
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Integrating w.r.t. from x =1 to x =2, we get

2x X -X
:23 +1dx= 2e” +e dy
1 er -1 1 ex _e—x
=[log (¢* —e ™) =log(e* e %) -log (e’ —e™")
2 -2 1_ 1401, -1
o g e € &) o2 g2 o s
el (e1 —e_l]

=log (e e ).

Q.3. Fmd the penmeter of the cardioid r =a (1 —cos0).
Ans. The given curve isr =a (1 —cos®). (1)

It is symmetrical about the initial line.

Wehaver =0whencos0 =1ie,0 =0.Also ris maximum P(r,9)
whencos0 =-1ie,0 =mand thenr =2a.As 6 increases from 0
to m, r increases from 0 to 2a. So the curve is as shown in the
figure. 0 2

By symmetry, the perimeter of the cardioid % Q X
=2 x the arc length of the upper
half of the cardioid.

Now differentiating (1) w.r.t. ¢, we have
dr /dO =asinf.

ds \? ds )’
We have G =r2 4| E| =42 (1—0059)2 +a?sin? 0
do do

AY

]
2

<t

=a? (Zsin2 lE))Z +a? (Zsinle cos%&))2
=4q2 sin? 9 (sm 9 +cos? 9]
2 2

— 402 sin? ;e. -(2)

If s denotes the arc length of the cardioid measured from the cusp O (Le, the point0 =0)
to any point P (r,0) in the direction of 8 increasing, then s increases as 0 increases. Therefore
ds /dB will be positive. Hence from (2), we have

ds fdO =2a sin;B. or ds=2a sin;B do. -(3)
As the cusp G, 0 =0 and at the vertex A,0 =m.
". the length of the arc OPA= I; Za sin ;9 de

01" o]"
=4a|:—cos—} =—4a|:cos—] =—4a(0-1)=4a.
2], 2o

-. the perimeter of the cardioid =2 x 4a =8a.
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Q.4. Find the intrinsic equation of the curve r=a(1+cos0). Also prove that

s? +9p% =16a?.
Ans. We have r=a(l+cosb) k1)
2
L r?+ ar =\/a2 (1 +c059]2 +a’sin? 0 =2a cos9
do de 2

If s be the length of the arc of the curve (1) measured from pole (0, 0) to any point
P (r,0)in the direction of 0 increasing. Then

5= Ie ds do = ZGI cosgd(-]=4asinE
dB 2 2

D
s=4asin 9 (2]
2
Also we know that
tan¢=rde =—a(1+cose)=—cotg=tan E_l_g
dr asin @ 2 2 2
n 0
= = 4 —
¢ 2 2
But, we have y=0+¢= e+§_ﬁ+%
39_ ¥ 9_ VY =
= —=ly—= = il [t |
2 2 2 \3 6
Putting the value of 8 in (2), we get
s =4a sin [\P _n} | 3)
3 6

This is required intrinsic equation.
Now, differentiating (3) w.r.t. y, we get

ds _4a LTI

= =_"cos| -—-=

d\p 3 3 6
or 3p=4acos LR \ (4
p [3 GJ (4)

Squaring (3] and (4) and adding, we get
52 +9p2 =16a2.
Q.5. Find the volume of the solid generated by the revolution of the curve
y a3 / (a2 +x2 )about its asymptote.
Ans. Clearly the curve cuts only y-axis at the point (0, a)and y =0, i.e, x-axis is its asymptote.

Therefore the solid is generated by the revolution of the curve about x-axis. The tracing of the
curve is shown in fig.
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Let V' be the volume of the solid generated by the revolution of the curve about x-axis

from x =— o to x =, then

6 Yi
V=r° nyz dx:ﬂ:IGo aidx {0, a)
e ~® (@® +x?Y /
[« y=a®/@®+x%)] X RNE & ~
=2n dx. e
I" (a %2 P

Let us putx=a tan 0, thendx =a sec?  dO and 0 varies from 6 =0to 6 =n/2.

Vg 6Iu/2 a sec’ 0.do

atsecto

=21ca3 I: cos? 0 do =21ta3 |:

V:lnzaa.

(2-1) =

E} (By Walli’s formula)

Q.6. Find the volume of a solid formed by the revolution of the loop of the curve

yz (a+ x]:xz (a — x) about x-axis.

Ans, Clearly, the given curve is symmetrical
about x-axis and the curve cuts the x-axis only
at the points (0, 0) and (a, 0) so the loop exists
between these points. The tracing of this curve
is shown in fig.

Therefore, the required volume is the
volume of a solid formed by the revolution of
upper half of the loop of the curve about x-axis
where x varies from 0 to a. Then

V=I:ny2 dx=nI:

2
_ x“ (2a —a —x)
X ean),

a-+x
=2anI:

a+x

a+x

=2an

2
=2an

Yi

A@,0) _

x*(@-x) :

=“J:

wdx n-l’ax dx

[ dx
x—a)dx +a>

_I:[ ) -.:a+x

a 3 a
%—ax+a2 log(a+x)] —n|:x}

OM m

: ¥y ([@a+x)=x%(a-x)]

2ax2
a+x

dx—nﬂxz dx

]—nj:xzdx

3

0 0
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.2 3
=2an %—az +a? log 2a —a* loga}—m;

a 3

2 3
=2an _a? +a? log Za} Sl

3
=—na® +2a3n 10,:.3;2—“?:2{13 T log2—4;a3

V =2na® |:log 2= g]

Q.7. Find the volume of the solid generated by the revolution of the tractrix
X =acost + ;a log tan? (t/2), y=a sint about its asymptote.

Ans. The given curve is

X =acost +%alog tan? (t/2), y=asint. = i
g=—4:1 sint+la .¥.Ztan (t/Z]sec2 (i:/Z).1
dt 2 tan®(t/2) 2
. a . a
=—asinf + =—gsint+——
2sin(t /2)cos(t /2) sint
. 2 2
. (1—?111 t) 4P co.s t -(2)
sint sint
Now the given curve is symmetrical %o
aboutboth the axes and the asymptote is the line © apt=3

y=0ie, x-axis. ¥=0,t50,x5-x
For the portion of the curve lying in the
second quadrant y varies from a to 0,t varies
from = /2 to 0 and x varies from 0 to —oc.
.. the required volume

=2f°°1|: yzdx=2.|'0ﬂ/2 79;2 j‘:.dt

X

gl
O

2
=2 I;/zaz sin®¢.2 Cf)st L [From (1) and (2)]
sin

=2ra’ In/zcosz t sint dt =2na’ i=31|:cr3.
0 31 3

(Q.8. Find the surface generated by the revolution of an arc of the catenary
y =ccosh(x/c)about the axis of x.
Ans. The given curve is, y =c cosh (x/c) (1)

Differentiating (1) w.r.t. x, we get
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hi,
h

— 1 dy 1 +smh2 cosh = fZ)
\ dx \

It the arc be measured from the vertex (x =0) to any point (x, ), then the required
surface formed by the revoelution of this arc about x-axis

_ dS’ _ X X X
_j:=a 2r ya dx =2n .[0 ¢ cosh . cosh . dx, from (1) and (2]}

=T EZcoshz de=nc‘[:|:1 +cosh 2—X}dx
c c
X

c ., 2x 2x
=nwc|x+-_sinh—=— | =nc x+—smh
2 ¢ lo 2 G

o X X
=nc |:x +c¢ sinh = cosh }
[ C

Q.9. Prove that the ratio of volumes of the solids generated by revolving the

ellipse x—z + y—z =1 about its major and minor axes is b:a.
a b

Ans. About major axis : Let V; be the volume of the solid y
of revolution about major axis AA’. Then B(0, b)
2
B 2 P 2{, x* /’ \
Vi —J:ny dx—fanb [1 2]dx . .
a -a, O)A’\ A(a, 0)
2nh? B'(0, b
B2 J:; (a® —x* o
a Y

a’ 3 a® | 3

About minor axis : Let V, be the volume of the solid of revolution about minor axis

2 37? 2[4 3
=21'|:b |:a2x—x—} =21cb |:2a ] 4-; ab?
Q

BRB',then
b b 2 2
Vi =I_bnx2 dy=1'cj_b a’ 1_y2 dy = Znazjo dy
b ) b
= b

Zn:a na? : 2na’ | 2b% | _4ma’b
B - Py =T g2y S| -

B2 b2 | 3 & 3 3
2 7

Hence V; :V, _Anab :4"jm 2 =b:a

3



142 Exam) Differential Calculus & Integral Calculus B.Sc.-l (SEM-)

Q.10. Prove that the surface of the solid generated by the revolution of the
tractrixx =a cost + %a log tan? % t, y =a sin t about its asymptote is equal

to the surface of a sphere of radius a.
Ans. The given tractric is

X =dcost +;a logtan2 ;t,y=asint.

sec2 lt 1
d—:—asint+a72.i=a —sint + 1
E tanit 2sin —tcos—t
. 1 (—sinz t+1) a cos® t dy
=q| -sint +— =a - =— and — =a cost.
sint sint sint

2 2
Hence ds _ j)fdx n d)’ w_‘_az cos? £l =2 cost.
dt de dt sin? ¢ sint

The given curve is symmetrical about both the axes and the asymptote is the line y =0
i.e, x-axis. For the arc of the curve lying in the second quadrant t varies from 0 to L .

*. the required surface =2. Iﬂ 2ny :_s dt
—41:I sin acostdt 4naz'|' cost dt
nt
=4na? [sin t]“/ 2 —4pa?

=the surface of a sphere of radius a.

Q.11. Find the surface of the solid generated by the revolution of the curve
X =cos® t and y=a sin® t about the x-axis.
Ans. We have x=acos’ t and y=a sin® t.

This curve is symmetrical about both the axes. {

AtA(a,0)>t=0and at B(0,a)=>t=n/2 B (0, a)

Now d—x=—3a cos® tsint /\
dt & R
W Horsin? bpost \/(a' 9

. ds_ ()" (ay)’ b

N dt \\dt dt

=3a \/cos4 tsin? ¢t +sin* t cos? t =3a sintcost:%sin 2t.
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Let S be the surface of a solid of revolutlon of the given curve about x-axis. Then
.S‘=2_rt/2 dsdt =4r I asinat.B—asintht
0 2

nf2
sin® ¢ _12na®
5 5

2
—12ma? J';/ sin? t cost dt =12na® [
0

Q.12. State and prove the theorem of pappus and Guldin for surface of a solid of
revolution.

Ans. Theorem of Pappus and Guldin for surface of a solid of revolution : If an arc of a

plane curve revolves abouta straight line in its plane, which does not intersect it, the surface of

the solid thus obtained is equal to the arc multiplied by the length of the path described by the

centroid of the arc.

Proof : Let I be the length of the arc AB and let it revolve k-
about OX 2
Let the abscissae of the extremities A and B of the arc be a P
and b. A
Then the surface generated by the revolution of the arc AB y
about x-axis is -
= J':;: 2n yds 1) 9 L M N

Also we know that (see the chapter on centre of gravity) the ordinate y, of the centroid
of the arc from x =a to x =b, of length [, is given by
b

Y i

y= = I (2]

From (1) and (2), we get the required surface =2r yl=Ix2n y
= (length of the arc) x (length of the path described by the centroid of the arc).
Q.13. Fiznd t%le azrea by double integration the region bounded by circle
X“+y°=
Ans. The areaofasmall element at any point (x, y}is dx dy.Now to find the area bounded by
the circle x> + y2 =a?, the region of integration R can be expressed as

—aSySa,—\faz —y2 st\ﬂ(az —yz).

Now, first integration is to be performed w.r. to x regarding y as constant.
.. the required area

=[], axdy=[’ J’“("z_yz) 1.dydx
R y==a Ye=_J(@- )
=fa [2 Jlﬂ\/m 1. dx] dy, by the property of definite integral

—zr [x]o(" ) gy = zf' V(@ -y?)dy=2. Zr\/[a ~y*)dy
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+—s8in =

B a
_g| V@ -y iy
2 2 a

0
1 -1 2

Q.14. Evaluate :

(i)ffxy(1+x+y)dxdy (“)L’E/m1+ix?y

Ans. (i) We have Ij ,[12 xy(1+x+y)dxdy

o[ 2,200, Pl
= .[0 x. £ +x°. o +x.7— dx, (integrating w.r.t.y treating x as constant)
| y=1

2

L1 E-n+® - 1+ 6- 1)}1:( J‘o[[s ;Jx+;x2i|dx

0

3
23 x? 3 x3 _23 2+27 123
6 2 2 3 2

(ii) We have I:I ' (1+x2] O

0

=Il R tan™? Y
0 L +x?) VL+x2)

y=0

(integrating w.r.t. y treating x as constant)

11
=[ ——[tan'1-tan"" Oldx =" ji
k JL+x?) 0 Jd+x?)

=E[10g x+y@+x2)) =Elog (1 ++2).

/2 pasin O
Q.15. Evaluate L - rdodr.
. asin®
Ans. We have J'n/z sin rdedr = %e [1 r? ] do
afl~eosd) a(l—-cos@)

__azf [sin? @ — (1 —cos0)%]d6
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=%a2 J';"z [2 cos® —cos? 8 — (1 —sin? 8)]dO

—q* I;/z (cos® —cos® 8)d6 =a? J:/Z [cose —;(1 +C°529]] do

=f2
=a? sine—le—lsinze =a%[1-T =la2 (4 —=).
2 4 0 41 4

Q.16. Evaluate I “zz dx dy dz over the sphere x% 4 y2 +z% =1

Ans. Here the region of integration can be expressed as

-1<x<1,V(A-2*) < y<V (1 -22), V(1 -x? - ) <2<V (1-%° - ).

*. the required triple integral
_ J- J-xfu -¥%) J-wlu - -
V1-2) PN -2 - yz]
V-2 -
S ,
a3 | a2

1 | Na-x) 2 23872
== 2(1-x° - dy|d
31—1{1-4(1-,3) 1 -x* - y* ¥/ dy dx

2% dx dydz

dx dy

=§J_11[IE/2 [(1-x?)cos? 02 N (1 -x )cosede]dx

145

[putting y =+ (l—x )sin 0 so thatdy =V (l—xz]cose do;
also when y=0,0 =0 and when y=\/ [1—x2 ).O0=m/2]

=§j_11 [2. :/2 (1-x%)% cos* Gdﬁ} dx
_4 . 23 31w _mpl 242
_EI—l 1-x%) ‘22 x-4I_1 (1-x%)% dx

1 2.3 15
=E.2_|' (1—22(2 +x4)a’x=E g~ iyt g
4 0 2 3 5 0

SEly Rl BB
2| 35 215 15

Q.17. Evaluate Il_ o Jﬂ/l_x J'\/l_x > xyz dx dy dz.

- (et

Ans. The given integral

dx dy
0



146 E!t'a\!n;‘if‘"ar Differential Calculus & Integral Calculus B.Sc.-l (SEM-)

e
%LLO J‘;/:U—;g;a—xz —y*)dxdy

-
=l j}‘,/iu—x[yu—xz)—ﬁ]dxdy

1-2

1.1 1 2. 2 1 4
== x| =(1-x - dx
2 x=0 |:2( )y 4-y ]0

1l g 2yt —x2 -1 (1 - 5272
_Zjo){zu 221 -x%) 4(1 x%) }dx
=%J';x[%—ﬂ(1—x2)2 dx

1
=1’[01[x—2x3 +x5)dx=1 1x2 —lx4 +1x6
8 6

8|2 2 .
_1f1.1 131
gl2 2 6) 48

Q.18. Change the order of integration in the double integral L;I E f(x, y)dxdy.

Ans. In the given integral the limits of integration are given by Y} 4
the straight lines y=0, y=x, x=0 and x =a. Draw these lines
bounding the region of integration in the same figure. We observe o5 2,’ (8.2]
that the region of integration is the area ONM. In the given o 3 1]
integral, the limits of integration of y being variable. we are

required to integrate first w.r.t. y regarding x as constant and then
wrt x (8 0)

To reverse the order of integration, we have to integrate —5 y=0 X
first w.r.t. x regarding y as constant and then w.r.t. y. This is done
by dividing the area ONM into strips parallel to the x-axis. Let us take strips parallel to the
x-axis starting from the line ON (i.e, y =x)and terminating on the line MN (i.e, x =a). Thus for
this region ONM, x varies from y to a and y varies from 0 to a. Hence by changing the order of
integration, we have

I:I:f(x.y)dx dy=E_[: f(x, y)dydx.

X+2a

W f(x, y)dx dy.

Ans, The area of integration is bounded by the curves y =+ a% —x?
ie, x2 +y2 =a?.
This is the equation of the circle with centre (0,0) and radius a. Also y=x+2a

represent a straight line which passing through (0, 2a), i.e, the Y-axis and the line x =a which
is parallel to Y-axis.

Q.19. Change the order of integration in f:
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We draw the curves x? +y2 =a2, y=x+2a, x=0 and

x =a. We observe that the region of integration is area MLANM.
To change the order of integration we draw a strip parallel

to x-axis. Draw the lines MC and MB parallel to X-axis. So the area
of integration is divided into three portions MLEC, NNCB and NAB.

For region MLC, x varies from x2 4 _y2 =a?
line x =a

or x:\faz —y2 to @ and y varies from 0 to a.

For region NMCB, x varies from 0 to a and y varies from a to 2a.
For region NBA, x varies from y —2a to a and y varies from 2a to 3a.
So, the given integral transform to

I f}ﬁ Foo I dyde+ [ 2 foe dyde+ [ [0 flx, Py

Q.20. Find the volume of the tetrahedron bounded by the plane X ‘Z +% -1and
a c

circle’s arc to

the co-ordinate planes.
Ans. The volume of a small element at a point (x, y, z) =dx dy dz.

.. the volume of the given tetrahedron = ”I dx dydz

where the integral is extended to all positive values of variables x, y, z.
Putx /a=u,y/b=v,z /c =w subject to the condition so that

a c
dx =adu,dy=bdv,dz =cdw
then the required volume = I ” abc du dvdw whereu +v+w <1

=abc ”! 11w gy dv aw

3
=abc L [By Dirichlet’s integral]
rii+1+1+1)

c _ abc _ abc
r4) 321 6
Q.21. Find the value of I ” log(x + y + z)dx dy dz, the integral extending over

all positive values of x, y, z subject to the conditionx + y + z< 1.
Ans. Here the integral is to be extended for all positive values of x, y and z such that
O<x+y+z<l

- the required integral
=J'”' log (x + y+z)dx dydz, where 0<x + y+z<1

=_[” log (x +y+z)x1_1 yl_1 2471 dx dydz



148 Exam) Differential Calculus & Integral Calculus B.Sc.-l (SEM-)

TOTWTW) gy, 10017 g,

rfg+1+1)
by Liouville’s extension of Dirichlet’s theorem
) 1 u? log u du, [ T (1)=1]
ag)—f L——d

integrating by parts taking u? as the second function

., |:0—1 lim o3 logu—lru2 du:|
30

2 3u—>0
1
3
=_1|:u_] . |: lim u3 10gu=0]
6| 3 u—>0
0
-1
18’
Note : lim u3 logu = lim logu _ = lim L = lim —lu?‘ =0.
u—0 "—’ol/u u—>0_3/u4 u>0 3

Q.22. Evaluate I ”x yPzY(1-x-y-z) dxdydz over the interior of
tetrahedron formed by the co-ordinate planes and the planex + y + z=1.
Ans. The region of integration is bounded by the plane x =0, y=0,z=0and x + y + z=1.So,
the variable x, y, z take all positive value subject to the condition 0<x + y+z<1
Therefore the given integral

=_”Ix[°‘+1)_1 y[ﬁ+1]_1 71 [1-(x +y+z)]7L dxdydz

_T{a+1)I(B+1)T (y+1) j‘lua+1+B+1+y+1—1 (1-u) du
'l +f+y+3) 9

[By Liouville’s extension of Dirichlet’s theorem]
=1“(a+1)1"(|3+1)1"(y+1)I1 (@t B+y+3)-1 (g A+D-1 5
oo +B+y+3) 0
_T'(@+1)T (ﬁ+1)1"(y+1)B(OL + By +3,A+1)
IF'fa+B+y+3)
_Te+r@+1)ry+1) I'(@+B+y+3)T' (A +1)
I(a+p+y+3) © T(a+B+7+A+4)
_Cle+1)I' (B+1)T (y+1)I" (A +1)
T{o+p+y+A +4)
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JIq 1] Hel LONG ANSWER TYPE 151D

Q.1. Find the length of the loop of the curve 3ay2 =x(x —a)z.

Ans. The equation of the curve is 3ay2 =x(x —a)z. (1)
This curve is symmetrical about the x-axis and passes through the origin. The tangent
at (0, 0) is the y-axis. The curve cuts the x-axis only at the point (a, 0).

Now differentiating (1) w.r.t. x, we get = dy 3x—a «[2)
2v 3ax
at (a,0) :y =i\1r. Thus at (a,0) tangents make the angles = /6 and —n /6 with
X 3

positive x-axis. Therefore, we have
AY

R N/
U\A(a,m

k4

If s is the arc length measured from 0 to any point on the curve in the direction of x

increasing. Then we will take gs positive.

X
3 2 2. .2
9: 1+ dl = 1+(3x—a] — 12ax +9x° +a“ —6xa
dx dx 12ax 12ax
ds 3x+a
dx  2.3ax

If s; denotes the length of the loop of the curve between the points x =0 to x =a.
Therefore, we have

or 51 _2-"“23:“/2 rr3x+a
—J:BX”Z +“x_1/2]dX=E[2x3/2 +2ax' 23
1 4ava
=_—[2 ‘\/7 Zaf = T
\/ga[ ava +2ava) s
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Q.2. Show that 8a is the length of an arc of the cycloid whose equations are
x=a(t-sint), y=a(l-cost).

Ans. The given equations of the cycloid are x =a (t —sint), y=a (1 —cost).
We havedx /dt =a (1 —cost),and dy /dt =a sint.

Zsinltcoslt
dy dy/dt _ asint _ 2 2 1

dx dx/dt a(l-cost) Zsinzlt

Now y=0whencost =1ie,t =0.Att =0,x=0, y=0and
dy/dx = . Thus the curve passes through the point (0, 0) and
the tangent there is perpendicular to the x-axis.

Again y is maximum when cost =-1 ie, t =n. When
t=m, x=an, y=2a, dy/dx =0. Thus at the point {(an, 2a) the
tangent to the curve is parallel to the x-axis. 0|f= 0 M A

Also in this curve y cannot be negative. Thus an arc OBA
of the given cycloid is an shown in the figure. It is symmetrical about the line BM which is the
axis of the cycloid.

2 2 2
as\' (&Y (V|6 o) +asine?
We have (dt) [dt] +[ ] {a(l-cost}}” +(asint)

dt

=a? {(2sin? %t]2 +(2sin % t cos% £%})

=442 sin? 1t [sin2 1t +cos? 1t]=4ﬂ2 sin’ 1t. (1)
2 2 2 2

If s denotes the arc length of the cycloid measured from the cusp O to any point P
towards the vertex B, then s increases as t increases. Therefore ds/dt will be taken with
positive sign. So taking square root of both sides of (1), we have

ds /dt =2a sin%t or ds=2a sin%tdt.

As the cusp G, £ =0, and at the vertex B,t =m.
Now the length of the arc OBA =2 x length of the arc OB

n 1 1 1" 1 "
=ZI 2asin—tdt=4a|—-2cos=t| =—-8a|cos=t

0 2 2 g 2 g
=—8a[0-1]=8a.

Q.3. For the ellipse x =acos), y=bsin¢, show that ds=a 1!1—e2 cos® ¢ dé.
Hence show that the whole length of the ellipse is

[1]2 e2 [1 3] et (1 3 5] e®
2and1-[2| E . [2.2].8 (22218 ...
2) "1\2°4)3 2°4°6) 5

where e is the eccentricity of the ellipse.
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Ans. Here, the given equation of ellipse is

x=acosd, y=bcos (1)
= g=—asincl> and d—y=bcos¢
do d

2 2
Now &J{d_x] (2)
dp \\do do

=\/a2 sin? ¢ +b? cos? ¢

=\/a2 sin? c]>+a2 (1—¢=,'2)t:os2 ¢
[-- b% =a? (1 —e?)for ellipse (1)]
=a \/sin2 ¢ +cos? ¢ —e? cos? ¢
=a \fl—ez cos? ()
ds =a 1 —e? cos? ¢ d¢

Forellipse (1) : Ellipse is symmetrical about both the axes and ¢ varies from0to 1/2x.
Now the whole length of the ellipse

=4 _[:’:;/z ds =4a J:/z vl —e? cos? ¢ dp

—4g E"z (1 —e? cos? $)'/72 d¢

1[_1J
n/2 1 2 9 2\ 2 2. 2
=4aI0 1+£(—e Ccos ¢]+7'(—e cos” ¢)° +

QL
223'2(—192 cos? §)2 +... |dé

2.4.6
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Q4.

Ans.

2
- e ’
2.4.2.6 2 4.6.2.4. 6 i|

2 2 4 2 g
gaw(1-[2] A D2 £ (DT E
2 2 4 3 2.4.6) 5

rdr
(r* -p*)
Show that the arc of the curve p? (a* + r*)=a*r? between the limits

r =b,r =cis equal in length to the arc of the hyperbola xy = a? between the
limits x =b,x =c.

Prove the formula s =

From differential calculus, we know that tan ¢ =r o and L. = [1+|r d—e ’
dr dr dr

45 _ i +tan? §) =/(sec? §) =secs

1 1 1 .
= = = [ p=rsing]
s Ju-sin? ) V{1-(? /r2)
_ r
r? -p*)
Thus ds=——"_dr.
r* -p*)
Integrating between the given limits, we get s =I; dr. (1)
r? —pz)
Now the given curve lsp (a +r4) =a*r? or p =at /[a +r4]
atr? 6
We have r? —p2 =r?- = ; .(2)

(a4 +r4) (a4 +r4]
Therefore from (1), the arc of the given curve between the limits r =b,r =c is

rdr rdr
= = [From (2]]
b V- L’ oS/ @t +rt)) o
=Icr\#[a +r )dr=jc\/(a4 +r4]dr (3)
b 3 b r2 )

Also, for the hyperbola )gr=a2 ie, y=a2/x,a'y/dx = —az/xz.
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.. the arc length of the hyperbola xy =a? between the limits x =b, x =c

c d 2 c a4
=I 1+(yj dx =.|. 1+ Ydx
b dx b x4
4 4 4 4
X

r
from x to r by a property of definite integrals]

—IC MET - o (@*+r%) dr. =[4)

b I‘Z

From (3) and (4) we observe that the two length are equal.

Q.5. Find the volume of the solid generated by the revolution of the cardioid
r =a(1+ cos0)about the initial line.

Ans. Obviously, the curve is symmetrical about the initial line and

r =0 when cos0 =-1, i.e, 0 =n and the maximum value of r =2a

LY
whencos8 =1,i.e,6 =0.Thus the tracing of the curve is given in fig. :\ A

4

Therefore, the required volume is the volume of a solid <
generated by the revolution of the upper half of the curve between
0 =010 0 =x about initial line (x-axis). Let this volume be V. Then

O=x dx
V=y_s ny? E.dﬂ

(As O increases x decreases so :‘; will have to take negative)

I L s d N "
=7 .[0 (rsin @) .%(r cos0)do (- x=rcos8, y=rsin6)
=—7 J'Ou a? § +c059]2 sin® @ %[o (1 +cos8)cos0]d0 ['or=a(l+cos0]]
=—na> I: 1 +cosB)2 sin? 0.(—sin® —2cos0sin0)do
=+ma’ I: 1 +cos® 6 +2cos0)(1+2 cosB).sin3 0do
=+na’ J'; [sin3 8 +4 cos0 sin® 0 +5cos? 0 sin? 8 +2 cos® 0 sin® 6)do
=+na’ I:J'n sin® 0 d6 +4 I“ cos® sin® 0 do
0 0
+5_|'1t cos® 6sin® 0.d6 +2_.'TE cos® B sin® @ d9i|
0 0
a3 T a3 T 2 -3
=Ta |:J.0 sin” 0 d0 +5.[0 cos” 0 sin 9d9:|

(The second and fourth integral vanish by the property of definite integral)
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i zj'(;‘/z sin® 0 d +10 j(;‘/z cos? 0 sin® de]

(By the property of definite integral)

—na? [2.871 1410, 270B1) 4 (By Walli’s formula)
E} 3.1
e [4,4] 8
373]| 3
V=§1ta3.
3

Aliter : The required volume is also taken as
4 =.|'TE E1t1r'3 sin 6 do =Err: I: al (1 +cose)3 sin 6 do
03 3
=Ena3 Iﬂ (1+cos8)? sin 0 do
3 0
4 kI
=Enaa _(1+cos6) =gn03 16 _
3 4 3 4
0
8
=—Td

3

Q.6. F;nd tlzle surface of the solid generated by the revolution of the lemniscate

r“ =a“ cos26 about the initial line.
Ans. The given curve isr? =a? cos26. (1)
Differentiating (1) w.r.t. 0, we get YA g=na
2
2rd—r=—2t12 sin20 or dl:Lmze
do d6 r A 8=0 '
B A
2 (o
ds_ 1],z (ar
do do 6 =—n4
4 . 2
=\/{ 2 cos20 +¢15112120} =1,/{r2 .a? cos26 +a* sin? 20}
e r
=1\/{a4 cos® 20 +a* sin? 20}, ['sr? =a? cos20]
r
=a?/r. «4[2)

The given curve is symmetrical about the initial line and about the pole.

Putting r =0in (1), we getcos20 =0 giving 20 =+ % nie,0=1 % TT.
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Therefore one loop of the curve lies between 8 =— % mand 0 = % .

There are two loops in the curve and for the upper half of one of these two loops 6

varies from 0 to %n.
.. the required surface =2 x the surface generated by the revolution of one loop

/4 ds .
_2'.[0 Znyﬁde,where y=rsind

=4n I rsing. . dB [From (2]]

=4ma? Io $in 6 d8 =4na’ [- cosB]“/4

=4na? [-(1/2)+1]=4na® [1-(1 /~2)].

Q.7. State and prove the theorem of Pappus and Guldin for volume of a solid of

Revolution.

Ans. Theorem of Pappus and Guldin for volume of a solid of Revolution : If a closed
plane curve revolves about a straight line in its place which does not intersect it, the volume of
the ring thus obtained is equal to the area of the region enclosed by the curve multiplied by the
length of the path described by the centroid of the region.

Proof : Let AP, BP, A be the closed plane curve and let
it roatet about the axis of x.

Let AL(x=a) and BN (x =b) be the tangents to the 3
curve parallel to the y-axis (@ < b). Also let any ordinate meet @
the curve at P, P, and let MP, = yy, MP, = y5 so that yq, y» I %
are function of x.

Now volume of the ring generated by the revolution of — 0 L M N
the closed curve AP, BP; A about the axis of x

=volume generated by the area ALNBP, A

—volume generated by the area ALNBP, A
b 2 b 2 b 2 2
=n L y2 dx —nL y dx=m L (v2" =y )dx. =y
Also if y be the ordinate of the centroid of the area of the closed curve, then

b1 1¢p 2 2
[ SO +7)02-mddx [ (" +3")dx
2 2-a
3 = p - )

where A is the area of the closed curve. [See the chapter on centre of gravity]
Hence from (1) and (2}, the required volume =2 A y=Ax2n y
=area of the closed curve x circumference of the circle of radius y
= (area of the curve) x (length of the arc described by the centroid
of the region bounded by the closed curve).

Y4 P,
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(Q.8. State and prove Dirichlet’s theorem for three variables.
Ans. Dirichlet’s theorem for three variables : If |, m, n are all positive, then the triple

integral ()T ()T ()
-1 m-1_n-1 I (mIn
I”x pre dedyde = I (l+m+n+1)’

where the integral is extended to all positive values of the variables x, y and z subject to the
conditionx + y+z <1

Proof : Let us first consider the double integral
I, =II Iy axay,
where the integral is extended to all positive values of the variables x and y subject to the
condition x + y<1.
Obviously the region of integration of I, in the 2-dimensional Euclidean space, is

bounded by the straight lines x =0, y =0and x + y =1. The limits of integration for this region
can be expressed as0<x<1,0< y<1-—x.

1-x
o ofx 11 om oy
Iy —L=0 Iy=0 X e dy—j0 X |::| dx

m
0

1 1
Lt a—xm dx=lj x' A —xyrti-l gy
m -0

- B(l,m+1), by the def. of Beta function
m

1T (m+1) _1TC{@).mIl (m)
"m T(+m+1) m T(+m+1)
_Irrim)
"T({+m+1)
The is Dirichelt’s theorem for two variables.
Now consider the double integral U, =I I xH y’"'1 dx dy,

[ T(n+1)=nT (n)]

(1)

where the integral is extended to all positive values of the variables x and y subject to the
conditionx + y<h.

Wehave x+y<h= %+%51.
So puttingx /h =uand y /h = vsothatdx =hdu anddy =h dv,the integral/, becomes
Uy ={| ()t (Y™ W% dudv
=pl+m ” ul~1 y™=1 gy dy, whereu +v <1
_pltm I' (L)I (m)
r(+m+1)
Now we consider the triple integral
I =”'I xI71ym 127 grdydz,

subject to the conditionx + y+z <lie, y+z<1l-xand0<x <1l

by (1). (2)
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We have I3 = E—o [” ym1 g1 gy dz]xl_1 dx,where y+z <1-x

=J'(:‘ (1 _x)m+n r (m]r (n) xl—l dx,

by using (2
I'(m+n+1) Y g(2)

_ I' (m)I (n) lel—l (1_x)m+n+1—1 dx
F(m+n+1)-0
_ I'(m)T (n) B(l,m+n+1)= I' (m)T" (n) .1"[[)1" (m+n+1)
F'{m+n+1) ' T(m+n+l) T{+m+n+1)
_I'@QT (mT (n)

, which proves the required result.
r(l+m+n+1)

Q.9. State and prove Dirichlet’s theorem for n variables.
Ans. Dirichlet’s theorem for n variables :

_ o = rgor@)...ri,)
Statement: [ [ ... [ x2 " 1x2"1 . x"Vax, dx,...dx, = 1 2 n
HJm ™ n g s e TR

where the integral is extended to all positive values of the variables x, , x5 ,... x,, subject to the
condition x{ +x5 +... +x, <1
Proof : We shall prove the theorem by mathematical induction.
First we prove the theorem for 2-variables, i.e, n=2.
Let us consider the integral
I =II xil -1 X;Z -1 dxq dx,.

Condition x4 +x5 <1
Now, using previous theorem, we have
raria
I, _ L)) (1)
r (1 + 11 +12 )
Equation (1) is true for two variables. Now assume that theorem is true for n variables.
Therefore

I =_” ---IXil_lxéz_l ...x,’,"'_1 dxq,dx,,...dx,
_T)C ()T ()
T+l +h +...+1;)

with condition x; +x5 +... +x, <L
If the condition x4 +x3 +... +x, <h, then putting

(2)

X X X
2oy, 22—y, ...?”=uirl so that

h h
We have ”...Ixil_lxéz_l... x,l{‘_l dxq dx; ...dx,

—pitRt. ” I uil_l ué‘_l u,,I{‘_l duq du; ...du,

Subject to the condition uy +uy +... +u, <1
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h11+12+ Ay 1"(11)1"(12) FU) (3)
T+l +h +...+1) )

(Using the assumed result (2)).
Now for n +1 variables the conditions are

X1 +X2 Fegs +xn +Xn+1 <1

ie, Xy +X3 +...+X, +Xp 1 S1-Xxq
and 0<xqy <1
. - -1
We have ”J'xil 1 xéz 1. xhl "":i dxq dxg ... dx, dx,.q

where Xq+Xy +o.+Xpiq <1
1 -1 -1 P |
g x} ” [I xéz e X, dy ...dxn+1]dx1
Using (3)

_ TRIT0)... Tl 1) _J-lxil-l L—x 0 +Ethrthal+l g
Ty +1+1 +...+1; +1,.1) 0

_TRITWU3). T lheq) TUITA+G +o +lpyq)

T+l +on 4hapilnrg) T O+ 7t +l i)
_T@)rz)...I'lnyq)

T+l +lp +...+1 1)

(4

The result (4) shows that the theorem hold for (n +1]) variables. Hence, by principle of
mathematical induction, theorem is true for all values of n.

Q.10. State and prove Liouvilie’s extension of Dirichlet’s theorem.
Ans. Liouvillie’s extension of Dirichlet’s theorem : If the variables x, y, z are all positive
such that

h<x+y+z<hy,

then the triple integral
I” flx+y+2)x "1y 1271 dy dydz
_T'T (m)T (n)
C{i+m+n)
. — -1 -1 _n-1 ; ;
Proof: Let ] —“ I Pl alF 1 dx dy dz, integrated over some region.

J‘:: f[u)ul+m+n—1 du.

Subject to the condition x + y +z < u, we have by Dirichlet’s theorem
I:ul+m+n (O (m)C (n) Wb
Cl+m+n+1)

If the condition be x + y + z <u +du, then

I [u +5u)1+m+n r (I]F [m)r (n] (2)
rff+m+n+1)
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Therefore the value of the integral I extended to all such positive values of the variables
as make the sum of the variables lie between u and u +8u is

’

=F(I]F (m)T (ﬂ][(u +8u)l+m+n _ul+m+n]
r¢g+m+n+1)

) [subtracting (2] from (1)]
=r(1)r(m)r(n)u;+m+n[ SuJHM_l]

1+—
Irff+m+n+1) u

_TOT T @) 1+men _1+(I+m+n)6u+...—1:|
Tr(fl+m+n+1) L

_TOT T () 4yl men-1 gy
r'(+m+n+1) ’

to the first order of approximation
_TOT () 1emen-1g,
r'{l+m+n)

Now consider the integral
IJI fx+y+z)x'™t ymt 2" dxdydz,

subject to the conditionhy <x+ y+z <h,.

If x + y + z lies between u and u +3u, the value of f{x + y + z) can only differ from f(u)
by a small quantity of the same order as du. Hence neglecting square of 6u, the part of the
integral

J'” flx+y+2z)x" y* 1 2" dydydz

which arises from supposing the sum of the variables to lie between u and u + 6u is ultimately
COTET () o lomen-g,
T({I+m+n)

Therefore the whole integral
J'“' flx+y+z)x'™t ymt 2" dxdydz,

wherehy <x+y+z <hy,is equal to
I ()T {m)I" (n)
T'(l+m+n)

equal to

J':lz f[u].ul+m+n—1 du.
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oo\ B.\ VERY SHORT ANSWER TYPE Jo1'/ 5 {e]\'F

Q.1.
Ans.

Define scalar fields.
A scalar point function fdefined over some region R such that to each point P (x, y, z)in

space, there corresponds a unique scalar f(P), is called a scalar field.

Q.2.
Ans.

Q3.

Ans,

Q4.
Ans,

and

Q..

Ans.

If@=wx u,ﬂ=wx v, showthati(uxv)=w><(uxv].
dt dt di

We have i[uxv):d—“><v+u><ﬂ=(w><u]><v+ux[wxv)
dt dt dt
=(vew)u-—(veu)w+(uevijw—(uew)v
=(vew)u—-(uew)v [ nev=veu]
=(wev)Ju—-(weu)lv=wx(uxv).

2 2 3
Showthat:d[rxdr) ar d +r><d—r
a2\"de) " dt g dt3
d{__dr) dr _dr d’r d%r _dr _dr
| PR | =" —+l"X——.I" T )
dt dt ) dt dt dt dtz dt dt

dz( er d d*r|_dr d*r d3r
——|rx rx =" X +Irx——
dtz dt dt dt
If f(x, y,z)=3x%y - y3z2, find grad fand | grad f|at(1,-2,-1).
Since we know that
grad f =Vf = 6f g}+gfc\
ay oz
=—(3x2y—y 27 +.9 a2y -3z )1+ (3xy v 23k
ox oy

=6xyi +(3x2 —3y222]}+[—2y3z)§
At(1,-2,-1) grad f =—12f -9j —16k
|grad f|=y144 +81+256 =481
In what dlrectlon from the point (1, 1, -1) is the directional derivative of
f= xt-2 y +4z% a maximum? Also find the value of this maximum

directional derivative.
Wehave grad f =2xi1-4yj+8zk=21i-4 j—8k at the point (1, 1, -1).
The directional derivative of fis maximum in the direction of grad f =2i—4j-8k.
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The maximum value of this directional derivative
=|grad f|=|21-4]-8k|=V (4 +16 +64) =V (84) =2V (21).
Q.6. What is the greatest rate of increase of u =xyz2 at the point(1,0,3)?
Ans. Wehave Vu=yz? i+xz? j+2xyz k.
*. at the point (1,0, 3), we have Vu =0i+9j+0k =9].
The greatest rate of increase of u at the point (1, 0, 3)

=the maximum value of c;_u at the point (1,0, 3)
s

=|Vu|, at the point (1,6,3)=|9j|=9.

Q.7. Prove that curl r=0.
Ans. We have by definition

.0 .0 o or or or
curlr=Vxr=i_—+j—+k — |xr=ix—+jx—+kx_—.,
ox oy o0z ox oy oz
Now r=xi+yj+zk
or l,ar l,ar il
ox dy Oz

curlr=ixi+jxj+kxk=0+0+0=0.
Q.8. Define gradient of a scalar field.
Ans. Gradient of a scalar field : Let f(x, y, z) be a scalar point function which is defined
over some region R in space and also differentiable at each point (x, y,z) in R, then the
gradient of f(x, y,z)is defined as

F » O 5.0 ¢
pad fd 1@ 3, O ¢
grad = Yoy Yo

Geometry and Vector Calculus
0z, 0 »
or rad 2 fget + — \%
grad f ( ox' oy j J f=vf
Thus gradient of fcan also be written in terms of vector differential operator (V). Since

V is a vector quantity, thus Vf is a vector whose components are gf ny gf Hence, gradient of
X z

a scalar field is a vector field.

Q.9. Determine the constant a so that the vector
V=(x+3y)i+(y—-2z)j+(x +ax)kis solenoidal.
Ans. A vector V is said to be solenoidal if div V =0.

Wehave divV =V -V=i[x +3y)+£[y—22)+i(x +az)=1+1+a=2+a.
ox oy 0z

Now divV=0if2+a=0ie, ifa=-2
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Q.10.If V is a constant vector, show that

(i) divv =0, (ii) curl V= 0.
Ans. (i) We have divV=ioﬂ+jog+ko@=ioO +je0+ke0=0.
ox ay oz

(ii) We have cuer=ixa—v+jx@+kxﬂ=ix0+jx0+k><0=0.
ox oy oz

Q.11. Using Gauss’s divergence theorem evaluate
”s [(x+z)dydz +(y +2)dzdx +(x + y)}dx dy]

where § is the surface of the sphere X2+ y2 +z% =4,
Ans, By Gauss's divergence theorem, we have

=II$ [(x +z)dydz +(y+z)dzdx +(x + y)dx dv]

0 ol 3
_IIIV [&(x +z)+5(y+z)+a[x +y):| dxdydz_”IV 2dxdydz
=ZIHV dV,where V is the volume of the sphere x + y? +z% =4
4 3| 64
=2|=n(2)’ [=—m.
e

Q.12. Prove that :*;c r.dr=0

Ans. Using Stoke’s theorem, we have

}cr.dr=“3(er).nds=o [ Vxr=0]
S5 ]'E:X SHORT ANSWER TYPE [T =51
\ ct d*r 2c
Q.1. Ifr=asinot + becosot + — sin wt, prove that — + o’r=""cosot.
w2 dt? 0]
where a, b, c are constant vectors and @ is a constant scalar.
Ans. Since g, b, ¢ are constant vectors so a'_a =0, @ =0 and d_c =0
dt dt dt
and r =asin ot + b coswt + 2. sin wt (1)
w2
d—r =ma cos ®t —ob sin ot +isin ot +ﬁcosmt
dt % ®
2
and d_r=£ d_r = —w?asin ot -’ b cosot +£cosmt +£cosmt —ct sin mt
dr? dt\.dt @ ®
——w” | asin ot + b cosot +Esin ot +2—ccosmt ——@’r +2—ccosmt.
o> © @
. d’r 2. 2¢
. — +0°r =— coswt.

dt? @
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Q.2.

Ans,

Q3.

Ans.

If a=sin0i+cos0j+0Kk, b=cosfi-sin0j—-3k, and ¢=2i+3j-3k, find
d T
—{ax(bxc)}atf=—.
e L) 2

i j k
We have bxc=|cosd -sin® -3
2 3 -3
=(3sin® +9)i+(3cos0 —-6)j+(3cosO +2sin0) k.
i j k
ax(bxc)=| sinB cos@ 0
2sin®+9 3cosO-6 3cosO+2sinh

=[3cc~s2 0 +2sin0cos® —30 cosD +60) 1
+{36sin8 +90 —3sin 0 cosO —2sin? 0)j+(—6sinB -9cosO) k.

% %{ax[bxc)}:(—6cose sin @ +2cos® 8 —2sin? 0

—3¢0os0 +30sin0 +6)i+(3sin0 +30 cos® +9—3cos? 0 +3sin? 6
—45inQ cos@)j+(—6cos@ +9sin0) k.

Putting 6 == /2, we get the required derivative =[4 +zn} 1+15j+9k.

If r =(cosnt)i+(sinnt) j, where n is a constant and ¢ varies, show that

rx—=nk.
dt R
. 4 di dj
Sincei and j are constant vectors so T =0, i =0 and

A

r =(cosnt)i +(sinnt) j. sl 1]
Differentiating (1) w.r.t. ', we get

‘;: =—n(sinnt){ +n(cosnt) j. (2]

Now r x‘;r=rx[—n (sinnt){ +n(cosnt) j]
t

=[(cos nt)f +(sinnt) }] x[-n(sin nt)f +n(cosnt) }] [From (1)]
=(n cos? nt)ixj—n [sin2 nt) jxi

=n (cos® nt)k +n (sin® nt) k [ jxi=—kandi xj=k]
=(r:os2 nt +sin® nt)n.’? =nk [z cos® nt +sin? nt =1)

=

dr
Hence,rx—=r
dt
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Q.4. Prove that
@ Vv(r.a)=a (ii) V[rab]=axbh,
where a and b are constant vectors.
Ans. Supposea=a, f+az f+a3 kand r =xf+y}'+zl?,b=b1 f+b2 J?+133 k,

then r.a=xaq +a;y+azz
X y z

and r.(laxb)=|a; ap; a3
by a; by

=x(azb3 —azh; )+ y(asby —ayb3)+z(ayb; —azby)
(i) V(r.a)=V(xaq +ayy+azz)=a,V(x)+a,V(y)+azV(z)
=ayi +a,j +azk (- V(x)=i,V(y)=],V(z)=k)
=
(iiyV[rab]=V{r.(axh))
=V[x({ab; —azb; )+ y(ashy —asb3) +z(a by —azb, )]
=VIx{ayb; —a3hy ) +V[y(azhy —a1b3)1+V[z(ab; —azby )]
=(azbs —azby )V (x)+(azby —a1b3}V (¥)+(a1h; —azby )V (z)
=(agbs —azhy )1 +(azhy —ashy) j +(ash, —azhy )k
i j k
=\aq G das | =axb
by a; b;
Virabl=axh.
Q.5. If f(x, y,z)=3xzy—y322, find grad f at the point{1,-2,-1).
Ans. We have
O d

grad f =Vf = 1—+1—+k Bx2y-y’z?)
ox oy
=iai(3x2y—yz )+] (3xy y322]+k (3XY y'z%)
X

=1 (6xy)+] (3x> —3y222]+k(—2y z)
=6xyi+(3x2 —3yzzz)i—2y32 k.
Putting x=1, y=—2,z =—1, we get
VF=6(1)(-2)i+ {831 -3(-2)% (-1)*}j-2(-2)° (-1)k=-12i-9j-16k.
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2

Q.6. IfA=x2yzi-2xz3 j+xz% k,B=2zi+ yj—xzk,ﬁndthevalueofaa (AxB)

x oy
at(1,0,-2).
i j k
Ans. Wehave AxB=|x*yz —2xz% xz°
2z y o
=(2x3z3 —)grzz )i +[2xz3 +x4yz)j+(x2yzz +4xz4)k.
%[A xB]=—szi+x4zj+2x2yzk.

52
ain
4 Ox dy

Putting x =1, y=0 and z=-2 in (1), we get the required derivative at the point
(1,0,—2)=-4i-8j.

Q.7. Iff=x%yi-2xzj+2yzk,find
(i) div f, (ii) curl f, (iii) curl curl £.
Ans, (i) We have
divf=Vof=[i6%+j%+ka%]0(x2yi—2xzj+2yz k)

(AxB) =a{a (A xB]} =-zi+4x3zj+4xz k. (1)
ox |y

=E[x2y)+2(—2xz]+2(2yz]=2291+0+2y=2y[x +1).
ox ay oz

1 J
(ii) We have curl f=V xf= 4 &
ox oy oz
xzy —2xz 2yz
0 0 . | O 0 ,.2.]:.|0 8 .2
=|:5(2yz)—§[—2xz]:|l—[&[Zyz]—a(x .ﬂ]l"‘[&(—zxz)—a(x }’):|k

=(2z +2x)i-0j+(-2z —x% )k =(2x +22)i—(x? +22z) k.

(iii) We have curl curl f=V x(Vxf) =V x[(2x +2z) i —(x2 +2z) K]

i j k
| & o2 @
ox oy oz

2x+2z 0 —x%_2z

19 x?2n|i-| @ (—x?—2)-2 ivlo-2
= ay( X Zz):|1 |:ax( x° —2z) 6Z(2x+2z)}]+|:0 6y[2x+22):|k

=0i-(-2x-2)j+(0-0)k=(2x +2)}
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Q.8. Prove that div grad (r" )=n(n+1}r"2.

Ans. Sincewehave grad(r")=(nr"" gradr) [+ grad f{r)=f'(r}(Vr)]
=nrt 1T [ gradr = r]
r r
=nr"?r
Now div grad (r" )=div (v r)
=ndiv (r* 2 r)=n[r" 2 V.r +r.grad (r"2)]
=n[3r" 2 +r.((n-2)r""3 grad r)] (-V.r=3)

=n |:3r"_2 +r .[(n ~2)ri3 r]:|
r

=n[3r" 2 +(n-2)r"* r.r]
=n[3r" 2% +(n-2)r"* r?] [ r.r=r?]
=n(n +1)r”_2
divgradr” =n(n+1)r""
Q.9. Prove that divi=2/r.
Ans. div(¥)=div (% r).

Alternate Method :
div F=div| ~ r]=div |:1 (xi+yj+z k]}
r

=div[xi+yi+sz= 0 [x]+a[y)+a(zj
r r r ox\r,) oy\r) dz\r

Now r2 —x2 +yz +2z2, 2r=a—r=2x ie, 6_r=£.
ox ox r
Similarly a—r=l anda—r=5.
oy r z 1
2 2 2 2
rzrrzrzrr r3 r 3 rrr
Q.10. Prove that curl [rx(ax r)]=3rxa, where a is a constant vector.
Ans. curl[rx{axr)]
=Vx[(rer)ja—(rea)r] [ ax(bxc)=(aec)b—(aeb)c]

=Vx[r2a—[r-a)r] [ rer=r’ =r2]
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=Vx(rfa)-Vx[(rea)r] [ Vx(A+B)=VxA+VxB]
=(Vr?)xa +r? (Vxa)—[V (rea)]xr—(rea)(Vxr)

[ Vx($A)=(Vd)x A +¢ {VxA]]

=(2rVr)xa+r? 0-[V(rea)lxr—(rea)0 [.-Vf(r)=f'(r)Vr;¥xa=0,a

being a constant vector; and V x r=0]

=[2r1r)xa —[V(rea)]xr
r

=2rxa-—-axr [+ V(rea)=a,if a is a constant vector]
=2rxa+rxa=3rxa.
Q.11. Find the angle between the surface x% 4 yz +z2=9andz=x2 + y2 -3at
the point(2,-1,2).
Ans. Let the given surfaces be

fiyz)=x*+y* +22 =9  as  fixy2)=c (1)
fa (x, y,z)sxz +y2 —-z=3 as f2(x,y.2)=c; sil)
Normal vector to surface (1) is

ny =grad f1 =(1 0 +_j’i+k J[x +y +z2)y=2x +2y] +22zk
ox "oy oz
At point (2,-1,2),
ng =2.2i +2(-1)j+2.2k=47-2] +4k
Normal vector to surface (2) is
0 0 2 » A g
ny =grad f5 —(1 a—+]5+ka J[x +y —-z")=2xi +2yj -k
At point (2,-1,2),
n, =2.21 +2(-1)j-k=4i -2j -k
Now let 0 be the angle between surfaces (1) and (2), then the angle between their

normals ny and n; is also 6.
oshe M-l _ 4.4+(-2)(-2)+4(-1)

Im ] e (=27 + @07 (87 +(-20% + (-1
_16+4-4 _ 16 _ 8

V36421 6v21 3421
0 =cos’ [8]
321

Q.12. Find the equation of the tangent plane to the surface yz —zx + xy + 5=0at
the point (1,-1,2).
Ans. Let f=yz-zx +xy+5=0,then
o _ L
A z+y,6y Z+X, e =y-—-X.
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vi=Ti:%;
ox oy

+Zif€+[y—z)f+[z+x)}+[y—x)]?
Z

At(l,-1,2) Vf=-3i +3j-2k
Let @Q(X,Y, Z) be any point on the tangent plane to the surface and P is given as
(1,-1,2).
PQ=(x -1 +(¥ +1) ] +(Z2-D)k
For the equation of tangent plane at (1,-1, 2), we have
_)
Vf.PQ=0

(X-1)(-3)+(Y +1)3+(Z2-2)(-2)=0
—-3X+3Y -2Z+3+3+4=0

or 3X-3Y+2Z=10 or 3x-3y+2z=10
Q.13. Find a unit normal vector to the level surface x2 y +2xy =4 at the point
(2,-2,3).

Ans. The equation of the level surface is f(x, y, z) =x? y+2xz =4.

The vector grad fis along the normal to the surface at the point (x, y, z).

We have gradf=V[x2y+2xz]=(2)gz+22)i+x2i+2xk.

. atthepoint(2,-2,3),grad f=—-2i+4j+4k

. —21i+4 j+4 kisavector along the normal to the given surface at the peint(2, -2, 3).

Hence a unit normal vector to the surface at this point.

_ —2i+4j+4k _—21+4]+4k__1i+3j+gk_

|-2i+4j+4k| Ja+16+16) 3 3 3

The vector — [—% i +E j+= Z kj .2, 1 i —gj—g k is also a unit normal vector to the

3° 3 3
given surface at the point (2, -2, 3).
Q.14. Find the directional derivative of f(x, y,z]=x2 yz +4xz? at the point
(1,-2,-1}in the direction of the vector 2 - j - 2k.
Ans. Leta=2i — j—2k,then
2 ﬂ:l(zf —-j-20).
la| (4+1+4) 3

Since f(x,y,z)=x yz+4xzz.
g=2}g}z+4zz
ox
i=xzz i—x y+8xz.
oy oz

Vf = Bf g’;;+gfk (Zayz+4-z )i +x z;+(x y+8xz)k
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At(1,-2,-1)
Vf =8f —j —10k.
Now directional derivative of fat (1, —2,—1) in the direction of 2 — j — 2k is
V.4 =8 -] —m:a.[; @ - —z:a] ~Ls+1420)-7.

Q.15. Find the directional derivative of the function f= x%- y2 +22z% at the

point P (1, 2, 3}in the direction of the line PQ where Qis the point (5, 0, 4).
Ans, Here grad f 7 i +gi+q k

ox oy oz
=2xi — 2] + 42k =2i —4j+12K at the point (1,2,3).
Also PQ = position vector of § — position vector of P
=(51+0j+4Kk)-(i+2j+3Kk)=4i-2j+ k.

If 4 be the unit vector in the direction of the vector I;E_), then
4i-2j+k _4i-2j+k
J6+4+1)  J(21)

*. the required directional derivative

Y 4i-2j+k
= d fled=(2i—4j+12k)ed — =2
(grad f)ed =(2i—4j+ ]{ 2D }

a=

‘f ——\/ 21).
,f(21) 21 (
Q.16.IfF(t)=3t2{ +t j+2kand G(t)=6t2{ +(t-1)]+3t k

thenﬁndL[— G+ F—Jdt dL( d—G+d—F G)dt

Ans. We have F.G=18t* +¢ (t -1)+6t

~ A A

i ik
and FxG =|3t2 t 2
6t2 (t-1) 3t

=i (3t -2t +2)—j(9t% —12t2)+k (3t3 -3t —6t3)
=(3t? -2t +2)i —(9t3 —12¢2)j - (3¢2 -30)k

Now, j'o[—c+1= Z_GJdt [F.GJ5 =[18t* +¢ (£ 1) +6¢]} =18 +6=24

IO(F _+_ G)dt [FxGJ
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=[(3¢% —2t +2)F — (963 —1262) - (3¢® +30) k3
=(3f +3] —6k)—(2))=i +3] -6k

2
Q17.1fr(t)=5t%i + tj—t 3k, prove thatjl2 rx% dt =—-14i+75j-15k.
t

2 2 2
Ans. Wehave'[ r><u dt=rxﬂ+c. IZ rxﬂ dt = rx@

Let us now find rxg—:.We have :—: =10t i+j—3t2k.

rx%=(5t2 it §—t3K)x (10¢ i +j—3¢2 K)

i j k
=562 ¢t 3 =—263i+5t%j-5¢% k.
10t 1 -3t
2 ] 2
[ rxLE ar = -2t3i+5t4j-5t2k]
1 dtz L 1
YR & 4P 2P
—[ -2 ] i+[5t ] i—[5t ] K =-141+75]-15k.
L 1 1 1

Q.18. Interpret the relations r. % =0 and rx % =0.

Ans. For r.d—r=0 = 2r.d—r=0.

ds ds
Integrating w.r.t s, we get

I(Zr.i]ds:jﬂds

or r? =a (constant) = r has constant magnitude.
Thus r describes a circle.

Again, for r x L. =0 = rand i are parallel.
ds ds

F . .
Also f! is a unit vector along tangent.
s

... rhas constant direction that the tangent at every point is along r. Thus r describes a
straight line.
(Q.19. By Gauss divergence theorem, show that
”s (x2 i"+y2 j=+z2 l;].ﬁdS=0,
2 2 2

y

where § is the surface of the ellipsoid X Y L Z 4
a? b
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Ans. By Gauss divergence theorem, we have
”S (X% § +y% j+2° :‘?).ﬁd5‘=f”s &% +y*j+z%k).av
where V is the volume enclosed by §
=J'”'V (2x+2y+2z)dxdydz =2 ”'J‘ (x+y+z)dxdydz

_9 J-y—b\ﬂl—zzlc j-x=a1/1 yZ/b2 22/c
Y iy L N PR
B [ TV“’Z e

(x+y+z)dxdydz

X

= L__CI —+x{y+2z) dydz
=-b\1-2 /¢ o=y [P 1P
2
~ta [ jy""'l "2/ ezt~ ﬁ PR
z=—(C y=— hi1— (,'2

y1-22

=t j i ﬁ | AN i dydz [By the property of definite integral]
Z=—C CZ bZ

i . b\ﬂl—zz /n:2

2 2 2
=%r z| 2 P |1-2 —y? +b— 1-Z |sint{ ¥ dz
b Jz=-c |2 c? 2 c2 72

2 2 2 2
A z b 1-Z [sin711 dz:Saan-c z|1-% |dz
b Jdz=—c 2 cz 4p Jz=c C2
=0 By the property of definite integral.
Q20.IfF=xi-yj+ (1.'2 —1)Kk, find the value Of”s F e ndS where § is the closed

surface bounded by the planes z =0, z =1 and the cylinder x2+ yz =4,
Ans. By divergence theorem, we have j J'S FendS =J'J'jv div FdV.

Here divF=i(x]+i(—y)+i(z2 -1)=1-1+2z=2z.
ox oy
(4%
”j divFdV = IFOI__ZI ) 2z dx dy dz

w]
_Iz=0 I ——2 xi‘l_- yZ)_yz) iz
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1

2
“fia Lzm—z 1zV{t-y")dydz =Lz«=—2 [4 ey ]] dy

z=0
2

=2Ii=_2 \f(4—y2)dy=4I:\/[4—y2]dy=4[g\/(4_y2)+zsin—1 g]o

=4[2sin"11]=4(2) % =4n.
Q.21. (i) For any closed surfae §, prove that ”s curlFe ndS=0.
(ii) Evaluate J' .[s re nds, where § is a closed surface.
(iii) If F =ax i+ by j+ cz k, a, b, ¢ are constants show that
”s Fe ndS=:1t(a+ b+c),

where § is the surface of a unit sphere.
Ans. (i) By divergence theorem, we have

IIS curlFends =J'IIV (div curlF)dV, where Vis the volume enclosed by S

=0, since div curl F =0.
(ii) By the divergence theorem, we have

.”s rondS:JIIV VordV=j_“V 3dV,sinceVer=divr=3

=3V, where V is the volume enclosed by S.
(iii) By the divergence theorem, we have

”s FendsS =J' I IV (V ¢F)dV, where Vis the volume enclosed by §

~[[], We@xtbyjrezirav=[ [, [%(ax)+%(by]+%(cz)]dv

=”va (a+b+c)dV =(a+b+c)V=(a+b +c)%rr,
since the volume V enclosed by a sphere of unit radius is equal to :n(1)3 ie, 4 -

.Z2Z. Evaluate y Green s eorem X —coshy +(V+SsinX )dy, where
Q.22. Evaluate by Green'’s th c(z h y)dx +(y + sinx )dy, where C

is the rectangle with vertices (0, 0), (=, 0),(x,1),(0,1).
Ans. By Green’s theorem in plane, we have

1. (Z—’:—%]dxdy=§c (M dx + N dy).

Here M =x% —cosh »N=y+sinx.
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Q.1.

Ans.

oN oM . Yi
— =c0sXx,— =—sinh y.
ox oy
Hence the given line integral is equal to 0.9 (m, 1)
.”R (cos x +sinh y)dx dy 1 R £
= !:=0 Lla={) (cosx +sinh y)dydx 8, 0) > ™oy X

=I:=o [ v cos x +cosh y];o dx

L . T .4 _
=L=O [cos x +cosh1—-1]dx =[sin x +x cosh1 —x]0 =(cosh1-1).

ET4iEe LONG ANSWER TYPE LI F 1D

Ifris a vector function of a scalar ¢ and a is a constant vector, m a constant,
differentiate the following with respectto t:

: " dr 1 dr
i) rea, ii) rxa, ffi) rx—, iv) re—,
® (i) (i) rx (vre
2
1 dr r+a
v) o+ vi)m| — vii i
(i) Let R=rea. [Note that rea is a scalar]
Then d—R=£oa+rod—a=£oa+r00 d—a=0,asaisconstant
dt dt dt dt dt
dr dr
=—ea+0="ea.
dt
(ii) Let R=rxa.
dR dr da dr .. da
Then —=—xa+rx—=—xa+rx0 e =
dt dt dt dt dt
dr dr
=— xa+0="—xa.
dt dt
(iii) Let R=rx$.
di
2 2
Then @=@x@+rxu=0+rxﬂ @xﬂﬂ)
dt dt dt di? dt? dt dt
d?r
=rx-— .
dt?
dr

iv) Let R=re—,
(iv) it

Then

di

dR dr dr _ d’r [dr)z d’r
=" e tre—_ = tre—..

dt dt dt g2 ¢
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an )

(v) Let R=r? +l.
2
Then d—R—i( )+ i =i(r2)+i LY , wherer =| r|
dt dt dt de\ ;2

dr Zdr

=2r——— .
dt ,-3 dt

2
(vi) Let R= m(:;.]

2 2 2
Then d—R—mi E =2m£oﬂ Note: dL—Z i
dt dt\ dt dt dt

2

—2m dr d°r
dt dt
(vii) LetR=_F "2
r2 +a

Then d—R=# & (r+a)+ - (r+a)
dt (% 4a%)ydt dt r? +a’

[Note that r’ +a

1 dr da 1 d
2. [dt+dt] {(r raly? de [r +a ]}[l‘+a)

2"

2isa scalar]

2rod—r
-1 dr _ dt (r+a) [ da O,i —21"@ iaz —0]
rz +az at (rz +az )2 dt dt dt dt

Ifr =|r|where r =xi + yj + zk, prove that

() Vf(r)=F(r)Vr (ii) Vr =£ (iii) Vf(r)xr=0
(V) Vr =nr"?%r W vr3=-3r5r
(i) Since we know that
f of :_ of
Vf="1I +5]+sz =4 1)

Vf(r)=63 e + 2 ren i+ renk
X oy 0z

or V)= F 0 T+ T+ F )k
)4 oy oz
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Vf(r)= f’(r)[—r +; +a—”k]
oy~ 0O
VFi(r)=f'(r)vr [using (i]] [Remember]
(iD) T Y i O g (by definition of gradient)
ox oy oz
Since r=xf+y}+zf€.
|r|2 =x?2 +_y2 +3
or r? —x2 +y2 +z2 (o |r[=r)
or_xor_yor_z
x r'éy r'oz r
Vr=Xi+Y j+ 2 k=t xf 4y jezk) or vr=".
r r° r r r
(iif) vir)=f'{r)vr [from (1]
=r'e)’ [from (ii)]
Now Vf(r)xr= f'( ]rxr =0 (v rxr=0)
(iv) Since vfir)=f [r)Vr. [from (i)]

Let f(r)=r".

Vit ="l v =™l [1) ( vr =—J
r r

or vrl =ar" r.
"2 e o Vr 3 =33 2375
Q.3. Prove thatcurl(axb)}=(b.V)a-bdiva-(a.V)b+adivbh.

Ans. We have curl (axb)=V x(axb)= i"2+}5£+f\:i x(axb)
ox "oy Oz

(v) From part (iv) Vr" =nr

=f><a(axb)+}><a[axb)+f€xaa(axb)
Y4

2 _(Oa ob oa ob oa ob
=ix| Exb+ax"" |+jx| Txb+ax |+kx| T xbrax—
ox ox oy ay 0z oz

oa ob oa ob
=i x| —xb |+i x| @ax== |+ x| =xb |+]x|ax=
(o )orleracr (g ) ioex3)

+hx a—axb +hx ax@
oz oz
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= Jx(a—abe+]x a—axb +kx (a—axb)
ox oy oz
RO J (=)
+ x| ax==|+jx|ax== |+kx| ax==
ox
= (f.b]a_"—(f.a_")b+[}.b]a_"— Jie ou b+(k. b]— b
ox oy oz

+ 0b (- Ob s . 06b ob ob
_|:(1.a]a—x—(r.a—x]aﬂj.a)5 (] 5]a+(k a]— [ az) i|

Usinga.b=>b.a, we get
[[b TP ja—a b. kaa) (e_(’icl+}_6c1+ﬁ_ga]b]

ox oy oz ox ay 74
a7 +a.j% 1 a. k%P (7.2,5.9%,;%\q
ox oy 0z ox ay oz
» 8 5 0 ~ &
=||b.i —+b.j —+b.k— |a-(V.a)b
H ey az] S
s 8 2 d a
-||a.i —+a.j - - b)a
[[ ax oy 6) " ]}

=(b.V)a-(V.a)b-(a.V)b+(V.b)a
Hence, curl (ax b)=(b.V)a —-bdiv (a) —(a.V)b +adiv (b). [Remember]
Q.4. IfVisadifferentiable vector function and fis a scalar point function, then
@ div(fV)=fdivV +V .(grad f).
(1) curl( fV)=(VfIxV + f(VxV).
Ans. (i) Since we know that
7}

div(fV)=V.(fV)= [1—+; “ +k —] (fFv)
ox oy

=°.7 +3. % (fv 12.7 14
. —(fV)+j ay(f 1+ fV)

> (of of of
:[xv+f )+1 (ayV+f y]+k[azv+faJ

(L) gl (2]
) D 3)62)

0
o v
ox
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=[[gf+g}+giﬁ}v}+[f(f.z—v+j a—V+k 6—")}
4 X

éx oy oy oz
=(VA).V +f(V.V)
div(fV)=f(divV)+V.(grad f) [Remember]

(ii) Curl (f V)=V x(fV)= (z+;a+12 )x(fV)
¥

[+ 0 2 0 »
—[l a—x]x(fV)+[] a]x(flf]+[ka—zjx(flfj

=fxi(fV)+}x%(fV)+§xi(fV)

s of of of
=1 (6XV+f J+] [6yv+f y}-k [6zv+faz)

(&S [ ) () (5]

[afA 6)" fl?]xV+f[fx6V+}xav+§xaVJ
oz ox oy

ox y oz
=(VF)xV + f (VxV).
s Curl (fVY=(V fIxV + f (VxV). [Remember]
Q.5. Ifu=yi+zj+xk,v=xyi+ yz j+zx k, find
(i) curl(ux v) (ii) u x curl v
(iii) vxcurlu (iv) dlv(uxv)
Ans. (i) Sinceu=yi+zj+xkv=xyi+yzj+zxk
i J k
. N B Ko P £
. uxv=y z x |=i(z°x-xyz)+j(x y—xyz)+k(yzz—xyz]
Xy Vi 2ZX
1 i k
Then curl (uxv)= L L L3
o oy a

(2%x-xz) (x’y-xyz) (V'x-2xp2)
| 2 FeZn v D rei 2| 8 ety o B2l
—l[ay[yz Xyz) az(x y 39’7-]]+I[az(7-x Xyz) ax(yz xyz}}
El8 r2 o et B PR
+k[6X[x y-xyz) ay(z b4 xyz}}

=1 [(2yz —x2)~ (- )]+ j [22x — 3y + yz] +k[2xy - yz + x2]
=(2yz —xz +xy)i +(2zx —xy + yz)+k (2xy — yz + xz).
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i j k
(ii) curl v = L

ox oy @

Xy yz 2ZX

2 a 6 -~ 6 a £ 6 a

=i|—(z=x)-—(yz)|+]|— ——(zx)|+k| —(yz)-—
[6y[ ) az(y ]] J[aztv) ax( )} [6x(y) ay[xy)]

=—yf—z}:—xi?=—(yf+zf+x§)=—u

o ouxcurlv=ux—u=—(uxu)=0.

i ] k
_ @ 8 8| s Ap SCL I
(iii) curl u = ox oy oz P-1+5( 1]+I?( N=-(i + ] +I?).
y z X

vxcurlu=(xyi +yz j + = k)x {-({ + ] +k)}
=—[)gzl?—)gff—yzf\:+yzf+zxf—zxf]
=i (& - yz)+ ] (o - 2) + (yz - W)k
(iv) From (i) uxv =(zzx—xyz]f+(x2y—2qyz]f+(yzz—)gzz]§.

div (ux v)=i (zzx —.)giz)+i (xzy—.!gzz]+E (yzz - Xyz)
ox oy 0z

—z% —yz+x? —xz+y? —xy=x® +y* +2° —xy—yz - =,

axr
Q.6. Ifais a constant vector, prove that curl Ls =—% + 3—:(3 er).
r r r
Ans. We have curlaxr:Vx(aer=2{ixi[aer}.
3 3 ox | 3
Now o< T iai(a r)+1(axarj+1[aaxr] f 1]
ax rt ox r3 ox) p3\ox
Now g— =0 because a is a constant vector.
X
Also r=xi+yj+zk
@—1 Furthera—r E
ox ox r
. (1) becomes @ Ry i{(axr]+i(ax1]— 3—(axr]+—[a|><l).
ox\ 3 r¢r r3 r’ rd

i><i Bk =—3—xix(axr]+iix(axi]
r5 r3

=_3l[(i.r)a_(i.a]r]+i[(i-i)a—(iOa)i]
re p3
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= 3an+3xa r+1a 1ai
=Tz - e S L T |
r5 r5 !'3 r

[ ier=x and iea=qa, ifa=a,i+ayj+azk]

3x* 1.1 .
r r r r

> ix2 .o N | W —izxz a+ 1Z‘,alx r+ia—i2a1i
ox\ 3 5 #5 3 3
:—ir2a+%(roa]r+%a—ia

F'S r r r3

[ B x> =r2,2 a1x=rea,Xa i=a]

=—i+%[a er)r
P or

Q.7. Verify divergence theorem for F =(}|rz —_yz]i+(y2 —zx)i+(zz -xy)k
taken over the rectangular parallelopiped 0<x <a,0< y<bh,0<z<c.
Ans. We havedivF=V «F =i[x2 —yz]+i(y2 —zx]+i(zz —xy)=2x +2y+2z.
ox oy oz

.. volume integer:”jv V'de=”.[v 2(x+y+z)dV
=2J':=0 I;=o I:=0 (x+y+2z)dxdydz

- a
c b xz
_2L=0 J'y=0 7+yx +zx] dydz
x=0

21 * |9° raysaz|dyd
o 2[4 sarren] e

c |a? ¥ ’ c |a’b _ab?
=2I ~—— y+a~—+azy dz=ZI ~—+-——+abz |dz
z=0 | 2 2 0 z=0 2 2

y

2 2 27°
=2 ﬂz+£z+abz— =[a2bc +ab2c+abc2]
2 2 2 i

=abc (a +b +c).
Surface Integral : We shall now calculate I J'S F en dS over the six faces of the

rectangular parallelopipied. Over the face DEFG,n =i, x =a.
Therefore, _” FendsS
DEFG
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=!c I [(a —yz)1+(y za)j+(zz—ay]k]-idydz

z=0
= " (@*-yz)dyd
_J-z=0 Iy=0 a“ —yzldydz Zi
e
= b B
[
= azy—z§i| dz D E
L y=0 "
- 5 0 A Y
={° |a%b- Zbildz 6 F
z=) X

2 J 2,2
= 2.Euz—z—b2 =|:;lz.bc:—c b ;
4 " 4

Over the face ABCO, n =—1i, x =0. Therefore
”ABCO F ond5=” [(0-yz)i+...+...]e(-i)dydz

Over the face ABEF, n =j, y=b. Therefore

[ [ ggr F -nds=j:=0 L‘;o [(x% —bz)i+(B? —zx) j+ (2% —bx) k] ejdx dz

a’c?

_ ¢ 2 _ _p2 o
=, f;o (° - zx)dx dz =b? ca
Over the face OGDC, n =—j, y =0. Therefore
II F-ndS=IC r zxdxdz =
0GDC z=0 Jx=0

Over the face BCDE, n =k, z =c. Therefore

”BCDEF°ndS I Ia (c? —xy)dxdy=c’ab-

Over the face AFGO, n =—k, z =0. Therefore

c?a?

ZbZ

IIAFG FendS= J' r xydxdy—#.



UNIT-ViII 181

Adding the six surface integrals, we get

2p2 242 2.2 .22
”sF'ndS=[ﬂsz—c:+C: ]+(b2ca—a £ LBE J

4 4

2,2 22
+[czab—a: +a b J

4

=abc (a +b+c).
Hence the theorem is verified.
Q.8. Verify Green’s theorem in the plane for .[c [[ny—x2 }dx +(x2 + y2 Jdy]

where C is the boundary of the region enclosed by y =x% and y2 =X

described in the positive sense.
Ans. LetRbe the region enclosed by y = x?
positive direction as shown in Fig.

The curves y=x2 and y2 =x intersect at (0,0) and (1,1) ¥

and y2 =x whose boundary Cis traversed in the

and have (1, 1)
P(x, y)=2xy —x* B
and Qx, y) =x2 +y2.
e 2x and il :
dy ox (0, ot)) 5
By Green’s theorem, we have
”R [———]dxdy=f€ Pdx +Qdy. (1)

" LHS. ”R(x ade dy

=”R (2x—2x)dxdy=”R 0.dxdy=0
and  RHS. =J‘C (P dx +Qdy)=jc [(2xy —x2)dx +(x2 + y*)dy]

=.[ODB [(2xy—x? )dx +(x? +yz)dy]+.‘BEo [(2xy —x%)dx + (% + y* ) dy] ..(2)

[ € consists of two curves ODB and BEO]
Along the curves BEO, we have
y2 =x and x varies from 0 to 1.
2y dy =dx.

[ go (@07 —x*Ydx +(x* + y* ) dy]
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=‘[01 237 —x%)ax +J'01(x2 +x]:—x\/;

1 1
X2 i3 1| x37% 372
=] 2 ==+
5/2 3 " 2| b/2 3j)2

4 1) 1(2 2
=l -+ =+ |=1
B

and along the curve ODB, we have

0

y=x2 and x varies from 1 to 0.
dy =2x dx.

o pg (@7 =x2)dx+(x* + Y2 ) dy)]
=jf[2x3 —x% +2x3 +2x5]dx
=Jf [4-x3 —x? +2x5)dx =_.[01 (4x3 —2f +2x5)dx
(by the property of definite integral)

1
3 6
3 3 3 3
0
0.

RHS.=-1+1=
Thus L.HS.=RHS.

Hence Green’s theorem is verified.
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Differential Calculus & Integral Calculus
B.Sc.-I (SEM-T) [MM,:75

Note : Attempt all the sections as per instructions.
Section-A : Very Short Answer Type Questions

Instruction : Attempt all FIVE questions. Each question carries 3 Marks. Very Short Answer
is required, not exceeding 75 words.

1. Define the term ‘Bounded intervals’.
2. Define homogeneous function.

3. Show that the sequence <1> converges to 0.
n

2
4. Find .[1 x3 dx, using fundamental theorem of integral calculus.

5. Define gradient of a scalar field.
Section-B : Short Answer Type Questions

Instruction : Attempt all TWO questions out of the following 3 questions. Each question
carries 7.5 Marks. Short Answer is required not exceeding 200 words.
6. Give examples to show that the union of an infinite collection of closed sets is not
necessarily closed.
Or Show that the pedal equation of the ellipse
2 2 2
aZ B 2 a? b a%h?
7. Write and prove Cauchy’s second theorem on limits.
Or Test the convergence of the series
1 1 1

B o Xx20,a>0.
X X+a x+2a

8. State and prove Darboux theorem.
Or Find the perimeter of the cardioid r =a (1 —cos0).
Section-C : Long Answer Type Questions

Instruction : Attempt all THREE questions out of the following 5 questions. Each question
carries 15 Marks. Answer is required in detail, between 500-800 words.

[« o]
9. Letl, =] . A+ ] [be an open interval for eachn € N. Prove that n I, is not a nbd of
n n n=1

each of its points.
Or State and prove Taylor’s theorem.
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10.

or
11.

Or

12.
Oor

13.
Or

Ex@ﬁf Differential Calculus & Integral Calculus B.Sc.-l (SEM-])

m
Find the envelope of the family of curves x—m + ﬁm =1, where the parameters ¢ and b
a b
are connected by the relationa® +b” =c?.
Trace the curve y2 (a+x) =x? (a —x).
Show by applying Cauchy’s convergent criterion that the sequence {s,) given by

Sy =1+§+—+...+ diverges.

2n-1

4 +3s,

Show that the sequence< s, >defined by sy =1,5,,1 = ,ne Nis convergent and

Sﬂ
find its limit.

o0 —_ —_ "
Discuss the convergence of the given integral J'o x"1eX dx,ifn>0.

Evaluate the following integrals
() Iolx4 (1—x]2 dx (ii) ry y dy

ceen [2 S48 oc xdx
8- d
[111]j0x( x7) X (1v)J' o

State and prove Dirichlet’s theorem for n variables.
Verify divergence theorem for F = [x2 —yz)i+( y2 —zx)j+ (z2 —xy) k taken over the
rectangular parallelopiped 0<x<a,0< y<h,0<z<c. Q

_1 Inthe publication of this book, every care has been taken in providing a precise and errorless material, yet if any mistake
has crept in, mechanically or technically, the Publisher, the Writer and the Printer shall not be responsible for the same.
All disputes are subject to the court of Meerut Jurisdiction.

_1 No portion of the text, title, design and mode of presentation, used in this book, be reproduced in any form. Violation of
ourwaming leads to legal prosecution.

_1 Suggestions forany improvement of this book are cordially invited and such suggestions may be incorporated in the next
adition. For any type of suggestion or error you can also mail your ideas on info@vidyauniversitypress.com.
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